Suppr超能文献

用于监测南极洲苔藓和地衣的无人机高光谱成像与人工智能技术

Drone hyperspectral imaging and artificial intelligence for monitoring moss and lichen in Antarctica.

作者信息

Sandino Juan, Barthelemy Johan, Doshi Ashray, Randall Krystal, Robinson Sharon A, Bollard Barbara, Gonzalez Felipe

机构信息

QUT Centre for Robotics (QCR), Queensland University of Technology (QUT), 2 George St, 4000, Brisbane City, QLD, Australia.

Securing Antarctica's Environmental Future (SAEF), Queensland University of Technology (QUT), 2 George St, 4000, Brisbane City, QLD, Australia.

出版信息

Sci Rep. 2025 Jul 26;15(1):27244. doi: 10.1038/s41598-025-11535-4.

Abstract

Uncrewed aerial vehicles (UAVs) have become essential for remote sensing in extreme environments like Antarctica, but detecting moss and lichen using conventional red, green, blue (RGB) and multispectral sensors remains challenging. This study investigates the potential of hyperspectral imaging (HSI) for mapping cryptogamic vegetation and presents a workflow combining UAVs, ground observations, and machine learning (ML) classifiers. Data collected during a 2023 summer expedition to Antarctic Specially Protected Area 135, East Antarctica, were used to evaluate 12 configurations derived from five ML models, including gradient boosting (XGBoost, CatBoost) and convolutional neural networks (CNNs) (G2C-Conv2D, G2C-Conv3D, and UNet), tested with full and light input feature sets. The results show that common indices like normalised difference vegetation index (NDVI) are inadequate for moss and lichen detection, while novel spectral indices are more effective. Full models achieved high performance, with CatBoost and UNet reaching 98.3% and 99.7% weighted average accuracy, respectively. Light models using eight key wavelengths (i.e., 404, 480, 560, 655, 678, 740, 888, and 920 nm) performed well, with CatBoost at 95.5% and UNet at 99.8%, demonstrating suitability for preliminary monitoring of moss health and lichen. These findings underscore the importance of key spectral bands for large-scale HSI monitoring using UAVs and satellites in Antarctica, especially in geographic regions with limited spectral range.

摘要

无人驾驶飞行器(UAV)已成为南极洲等极端环境中遥感的重要工具,但使用传统的红、绿、蓝(RGB)和多光谱传感器检测苔藓和地衣仍然具有挑战性。本研究调查了高光谱成像(HSI)在绘制隐花植物植被图方面的潜力,并提出了一种结合无人机、地面观测和机器学习(ML)分类器的工作流程。在2023年夏季对东南极洲特别保护区135的考察期间收集的数据,用于评估从五个ML模型派生的12种配置,包括梯度提升(XGBoost、CatBoost)和卷积神经网络(CNN)(G2C-Conv2D、G2C-Conv3D和UNet),并使用完整和轻量级输入特征集进行测试。结果表明,归一化植被指数(NDVI)等常用指数不足以检测苔藓和地衣,而新的光谱指数更有效。完整模型表现出高性能,CatBoost和UNet的加权平均准确率分别达到98.3%和99.7%。使用八个关键波长(即404、480、560、655、678、740、888和920纳米)的轻量级模型表现良好,CatBoost为95.5%,UNet为99.8%,表明适用于苔藓健康和地衣的初步监测。这些发现强调了关键光谱带对于在南极洲使用无人机和卫星进行大规模HSI监测的重要性,特别是在光谱范围有限的地理区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9441/12297592/db445f39fee8/41598_2025_11535_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验