Kubeczek Aleksander, Olejarczyk Michał, Gruber Piotr, Antończak Arkadiusz J
Faculty of Electronics, Photonics and Microsystems, Department of Field Theory, Electronic Circuits and Optoelectronics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland.
Faculty of Mechanical Engineering, Department of Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland.
Sci Rep. 2025 Jul 26;15(1):27249. doi: 10.1038/s41598-025-12573-8.
The thermal degradation of polymers in powder bed fusion (PBF) is one of the major issues preventing wider adoption of this technology at the production scale. Although standard PBF allows for elastic production of complex parts in a single-step manufacturing process, it is materially inefficient. This is because only approximately 10% of the material is used to develop parts, while the majority of semicrystalline polyamide 12 (PA12) remain unused. The recovered powder cannot be directly reused in subsequent processes because it remains at high temperatures, above the glass transition and below the melting point for a long time during printing. In this work, we present a novel way to process PA12 at room temperature without exposure to a thermal agent. Dual beam laser sintering (DBLS) uses a double laser system that effectively compensates for the temperature in the melting zone and prevents material shrinkage. To demonstrate the effectiveness of the DBLS method, the material was kept in a closed loop. Specimens from each iteration of the process (n = 4) were analyzed. No significant changes were observed in the chemical properties (molecular weight and melt viscosity, assessed via gel permeation chromatography (GPC) and melt flow index (MFI) analysis), rheological properties (flowability and size distribution) nor in the particle shape of the powder samples. Mechanical properties of the built specimens, when compared with the initial values, proved to be satisfactory.
粉末床熔融(PBF)中聚合物的热降解是阻碍该技术在生产规模上更广泛应用的主要问题之一。尽管标准的PBF能够在单步制造过程中弹性生产复杂部件,但材料利用效率低下。这是因为只有大约10%的材料用于制造部件,而大部分半结晶聚酰胺12(PA12)仍未被使用。回收的粉末不能直接用于后续工艺,因为在打印过程中它会长时间处于高于玻璃化转变温度且低于熔点的高温状态。在这项工作中,我们提出了一种在室温下处理PA12且不暴露于热介质的新方法。双光束激光烧结(DBLS)使用双激光系统,可有效补偿熔化区的温度并防止材料收缩。为证明DBLS方法的有效性,材料被置于闭环中。对该工艺每次迭代的样本(n = 4)进行了分析。在化学性质(通过凝胶渗透色谱法(GPC)和熔体流动指数(MFI)分析评估的分子量和熔体粘度)、流变性质(流动性和尺寸分布)以及粉末样品的颗粒形状方面均未观察到显著变化。与初始值相比,成型样本的机械性能令人满意。