Suppr超能文献

挖掘保护区复杂的生态模式:一种用于发现保护规则的FP增长方法。

Mining Complex Ecological Patterns in Protected Areas: An FP-Growth Approach to Conservation Rule Discovery.

作者信息

Hunyadi Ioan Daniel, Cismaș Cristina

机构信息

Department of Mathematics and Informatics, Faculty of Science, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania.

出版信息

Entropy (Basel). 2025 Jul 4;27(7):725. doi: 10.3390/e27070725.

Abstract

This study introduces a data-driven framework for enhancing the sustainable management of fish species in Romania's Natura 2000 protected areas through ecosystem modeling and association rule mining (ARM). Drawing on seven years of ecological monitoring data for 13 fish species of ecological and socio-economic importance, we apply the FP-Growth algorithm to extract high-confidence co-occurrence patterns among 19 codified conservation measures. By encoding expert habitat assessments into binary transactions, the analysis revealed 44 robust association rules, highlighting interdependent management actions that collectively improve species resilience and habitat conditions. These results provide actionable insights for integrated, evidence-based conservation planning. The approach demonstrates the interpretability, scalability, and practical relevance of ARM in biodiversity management, offering a replicable method for supporting adaptive ecological decision making across complex protected area networks.

摘要

本研究引入了一个数据驱动的框架,通过生态系统建模和关联规则挖掘(ARM)来加强罗马尼亚2000自然保护区鱼类物种的可持续管理。利用七年的生态监测数据,涉及13种具有生态和社会经济重要性的鱼类,我们应用FP - Growth算法提取19项编纂的保护措施之间的高置信度共现模式。通过将专家栖息地评估编码为二元事务,分析揭示了44条稳健的关联规则,突出了相互依存的管理行动,这些行动共同提高了物种恢复力和栖息地条件。这些结果为综合的、基于证据的保护规划提供了可操作的见解。该方法证明了ARM在生物多样性管理中的可解释性、可扩展性和实际相关性,提供了一种可复制的方法,以支持跨复杂保护区网络的适应性生态决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验