College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China.
Department of Artificial Intelligence, Faculty of Computer Science, Polytechnical University of Madrid, Campus de Montegancedo, Boadilla del Monte 28660, Madrid, Spain.
Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac296.
Multi-drug combinations for the treatment of complex diseases are gradually becoming an important treatment, and this type of treatment can take advantage of the synergistic effects among drugs. However, drug-drug interactions (DDIs) are not just all beneficial. Accurate and rapid identifications of the DDIs are essential to enhance the effectiveness of combination therapy and avoid unintended side effects. Traditional DDIs prediction methods use only drug sequence information or drug graph information, which ignores information about the position of atoms and edges in the spatial structure. In this paper, we propose Molormer, a method based on a lightweight attention mechanism for DDIs prediction. Molormer takes the two-dimension (2D) structures of drugs as input and encodes the molecular graph with spatial information. Besides, Molormer uses lightweight-based attention mechanism and self-attention distilling to process spatially the encoded molecular graph, which not only retains the multi-headed attention mechanism but also reduces the computational and storage costs. Finally, we use the Siamese network architecture to serve as the architecture of Molormer, which can make full use of the limited data to train the model for better performance and also limit the differences to some extent between networks dealing with drug features. Experiments show that our proposed method outperforms state-of-the-art methods in Accuracy, Precision, Recall and F1 on multi-label DDIs dataset. In the case study section, we used Molormer to make predictions of new interactions for the drugs Aliskiren, Selexipag and Vorapaxar and validated parts of the predictions. Code and models are available at https://github.com/IsXudongZhang/Molormer.
多药物联合治疗复杂疾病逐渐成为一种重要的治疗方法,这种治疗方法可以利用药物之间的协同作用。然而,药物-药物相互作用(DDI)并不全是有益的。准确快速地识别 DDI 对于增强联合治疗的效果和避免意外的副作用至关重要。传统的 DDI 预测方法仅使用药物序列信息或药物图信息,忽略了药物空间结构中原子和边的位置信息。在本文中,我们提出了 Molormer,一种基于轻量级注意力机制的 DDI 预测方法。Molormer 将药物的二维(2D)结构作为输入,并使用空间信息对分子图进行编码。此外,Molormer 使用轻量级注意力机制和自注意力蒸馏来对编码的分子图进行空间处理,这不仅保留了多头注意力机制,而且降低了计算和存储成本。最后,我们使用孪生网络架构作为 Molormer 的架构,可以充分利用有限的数据来训练模型,以获得更好的性能,并且在一定程度上限制了处理药物特征的网络之间的差异。实验表明,我们提出的方法在多标签 DDI 数据集上的准确性、精度、召回率和 F1 方面均优于最先进的方法。在案例研究部分,我们使用 Molormer 对 Aliskiren、Selexipag 和 Vorapaxar 等药物的新相互作用进行了预测,并验证了部分预测结果。代码和模型可在 https://github.com/IsXudongZhang/Molormer 上获取。