Suppr超能文献

2020-2022 年美国可穿戴设备的拥有和使用模式:调查研究。

Patterns of Ownership and Usage of Wearable Devices in the United States, 2020-2022: Survey Study.

机构信息

Department of Health Policy and Management, University of California, Los Angeles, Los Angeles, CA, United States.

Rock Health, San Francisco, CA, United States.

出版信息

J Med Internet Res. 2024 Jul 26;26:e56504. doi: 10.2196/56504.

Abstract

BACKGROUND

Although wearable technology has become increasingly common, comprehensive studies examining its ownership across different sociodemographic groups are limited.

OBJECTIVE

The aims of this study were to (1) measure wearable device ownership by sociodemographic characteristics in a cohort of US consumers and (2) investigate how these devices are acquired and used for health-related purposes.

METHODS

Data from the Rock Health Digital Health Consumer Adoption Survey collected from 2020 to 2022 with 23,974 US participants were analyzed. The sample was US Census-matched for demographics, including age, race/ethnicity, gender, and income. The relationship between sociodemographic factors and wearable ownership was explored using descriptive analysis and multivariate logistic regression.

RESULTS

Of the 23,974 respondents, 10,679 (44.5%) owned wearables. Ownership was higher among younger individuals, those with higher incomes and education levels, and respondents living in urban areas. Compared to those aged 18-24 years, respondents 65 years and older had significantly lower odds of wearable ownership (odds ratio [OR] 0.18, 95% CI 0.16-0.21). Higher annual income (≥US $200,000; OR 2.27, 95% CI 2.01-2.57) and advanced degrees (OR 2.23, 95% CI 2.01-2.48) were strong predictors of ownership. Living in rural areas reduced ownership odds (OR 0.65, 95% CI 0.60-0.72). There was a notable difference in ownership based on gender and health insurance status. Women had slightly higher ownership odds than men (OR 1.10, 95% CI 1.04-1.17). Private insurance increased ownership odds (OR 1.28, 95% CI 1.17-1.40), whereas being uninsured (OR 0.41, 95% CI 0.36-0.47) or on Medicaid (OR 0.75, 95% CI 0.68-0.82) decreased the odds of ownership. Interestingly, minority groups such as non-Hispanic Black (OR 1.14, 95% CI 1.03-1.25) and Hispanic/Latine (OR 1.20, 95% CI 1.10-1.31) respondents showed slightly higher ownership odds than other racial/ethnic groups.

CONCLUSIONS

Our findings suggest that despite overall growth in wearable ownership, sociodemographic divides persist. The data indicate a need for equitable access strategies as wearables become integral to clinical and public health domains.

摘要

背景

尽管可穿戴技术已经越来越普及,但针对不同社会人口群体拥有此类技术的全面研究仍然有限。

目的

本研究旨在(1)通过美国消费者队列中的社会人口特征来衡量可穿戴设备的拥有率,以及(2)调查这些设备是如何被获取和用于与健康相关的目的。

方法

对 2020 年至 2022 年期间从 Rock Health Digital Health Consumer Adoption Survey 中收集的 23974 名美国参与者的数据进行了分析。该样本在人口统计学方面与美国人口普查相匹配,包括年龄、种族/族裔、性别和收入。使用描述性分析和多变量逻辑回归探索了社会人口因素与可穿戴设备拥有之间的关系。

结果

在 23974 名受访者中,有 10679 名(44.5%)拥有可穿戴设备。较年轻的个体、收入和教育水平较高的个体以及居住在城市地区的个体拥有可穿戴设备的比例更高。与 18-24 岁的个体相比,65 岁及以上的个体拥有可穿戴设备的几率明显较低(比值比 [OR]0.18,95%置信区间 [CI]0.16-0.21)。较高的年收入(≥200,000 美元;OR2.27,95%CI2.01-2.57)和高等教育程度(OR2.23,95%CI2.01-2.48)是拥有可穿戴设备的有力预测因素。居住在农村地区会降低拥有设备的几率(OR0.65,95%CI0.60-0.72)。性别和医疗保险状况的不同也导致了拥有率的显著差异。女性拥有可穿戴设备的几率略高于男性(OR1.10,95%CI1.04-1.17)。私人保险增加了拥有设备的几率(OR1.28,95%CI1.17-1.40),而没有保险(OR0.41,95%CI0.36-0.47)或在医疗补助计划(OR0.75,95%CI0.68-0.82)下则降低了拥有几率。有趣的是,少数族裔群体,如非西班牙裔黑人(OR1.14,95%CI1.03-1.25)和西班牙裔/拉丁裔(OR1.20,95%CI1.10-1.31)受访者的拥有率略高于其他种族/族裔群体。

结论

我们的研究结果表明,尽管可穿戴设备的拥有率总体上有所增长,但社会人口差异仍然存在。数据表明,随着可穿戴设备成为临床和公共卫生领域不可或缺的一部分,需要采取公平获取策略。

相似文献

8
Use of wearable healthcare devices by older adults and their willingness to share health data with providers.
Health Informatics J. 2021 Oct-Dec;27(4):14604582211058073. doi: 10.1177/14604582211058073.

引用本文的文献

2
Mapping the landscape of machine learning in chronic disease management: A comprehensive bibliometric study.
Digit Health. 2025 Jul 23;11:20552076251361614. doi: 10.1177/20552076251361614. eCollection 2025 Jan-Dec.
3
Artificial Intelligence and ECG: A New Frontier in Cardiac Diagnostics and Prevention.
Biomedicines. 2025 Jul 9;13(7):1685. doi: 10.3390/biomedicines13071685.
9
Automated loss of pulse detection on a consumer smartwatch.
Nature. 2025 Feb 26. doi: 10.1038/s41586-025-08810-9.
10
Patterns of willingness to share health data with key stakeholders in US consumers: a latent class analysis.
J Am Med Inform Assoc. 2025 Apr 1;32(4):702-711. doi: 10.1093/jamia/ocaf014.

本文引用的文献

1
From lab to life: how wearable devices can improve health equity.
Nat Commun. 2024 Jan 2;15(1):123. doi: 10.1038/s41467-023-44634-9.
2
Wearable Digital Health Technology.
N Engl J Med. 2023 Nov 30;389(22):2100-2101. doi: 10.1056/NEJMe2303219.
3
Use of wearables for monitoring cardiometabolic health: A systematic review.
Int J Med Inform. 2023 Nov;179:105218. doi: 10.1016/j.ijmedinf.2023.105218. Epub 2023 Sep 20.
4
Association of Demographic and Socioeconomic Indicators With the Use of Wearable Devices Among Children.
JAMA Netw Open. 2023 Mar 1;6(3):e235681. doi: 10.1001/jamanetworkopen.2023.5681.
5
Challenges and recommendations for wearable devices in digital health: Data quality, interoperability, health equity, fairness.
PLOS Digit Health. 2022 Oct 13;1(10):e0000104. doi: 10.1371/journal.pdig.0000104. eCollection 2022 Oct.
6
Wearable devices-addressing bias and inequity.
Lancet Digit Health. 2022 Dec;4(12):e856-e857. doi: 10.1016/S2589-7500(22)00194-7. Epub 2022 Nov 2.
8
The Influence of Wearables on Health Care Outcomes in Chronic Disease: Systematic Review.
J Med Internet Res. 2022 Jul 1;24(7):e36690. doi: 10.2196/36690.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验