Qin Yi, Kang Yuchuan, Liu He, Feng Jianbin, Qiao Jianxin
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
Beijing Institute of Astronautical System Engineering, Beijing 100076, China.
Polymers (Basel). 2025 Jul 20;17(14):1990. doi: 10.3390/polym17141990.
The proliferation of electromagnetic wave applications has accentuated electromagnetic pollution concerns, highlighting the critical importance of electromagnetic wave absorbers (EMA). This study proposes innovative I-Wrapped Package Lattice electromagnetic wave absorbers (IWP-EMA) based on the triply periodic minimal surface (TPMS) lattice structure. Through a rational design of porous gradient structures, broadband wave absorption was achieved while maintaining lightweight characteristics and mechanical robustness. The optimized three-dimensional configuration features a 20 mm thick gradient structure with a progressive relative density transition from 10% to 30%. Under normal incidence conditions, this gradient IWP-EMA basically achieves broadband absorption with a reflection loss below -10 dB across the 2-40 GHz frequency band, with absorption peaks below -19 dB, demonstrating good impedance-matching characteristics. Additionally, due to the complex interactions of electromagnetic waves within the structure, the proposed IWP-EMA achieves a wide-angle absorption range of 70° under Transverse Electric (TE) polarization and 70° under Transverse Magnetic (TM) polarization. The synergistic integration of the TPMS design and additive manufacturing technology employed in this study significantly expands the design space and application potential of electromagnetic absorption structures.
电磁波应用的激增加剧了对电磁污染的担忧,凸显了电磁波吸收体(EMA)的至关重要性。本研究基于三重周期极小曲面(TPMS)晶格结构提出了创新的I型包裹结构晶格电磁波吸收体(IWP-EMA)。通过对多孔梯度结构的合理设计,在保持轻质特性和机械强度的同时实现了宽带吸波。优化后的三维结构具有20毫米厚的梯度结构,相对密度从10%到30%逐步过渡。在垂直入射条件下,这种梯度IWP-EMA在2-40吉赫兹频段基本实现了反射损耗低于-10分贝的宽带吸收,吸收峰值低于-19分贝,展现出良好的阻抗匹配特性。此外,由于结构内电磁波的复杂相互作用,所提出的IWP-EMA在横向电(TE)极化下实现了70°的广角吸收范围,在横向磁(TM)极化下实现了70°的广角吸收范围。本研究中TPMS设计与增材制造技术的协同集成显著扩展了电磁吸收结构的设计空间和应用潜力。