Suppr超能文献

通过CERTAIN项目的碳足迹分析对在线与面对面重症护理教育的环境影响:横断面研究

Environmental Impact of Online Versus in-Person Critical Care Education Through the Carbon Footprint Analysis of the CERTAIN Program: Cross-Sectional Study.

作者信息

Wang Baiyong, Zambrano Claudia Castillo, Nikravangolsefid Nasrin, Carvalhais Ricardo Machado, Niven Alexander, Gajic Ognjen, Dong Yue

机构信息

Department of Critical Care Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States.

出版信息

JMIR Form Res. 2025 Jul 31;9:e63524. doi: 10.2196/63524.

Abstract

BACKGROUND

Climate change is a pressing public health issue, with the US health care sector contributing about 479 million tons of carbon dioxide (CO2) annually. Online continuing medical education offers an alternative solution to increase global education delivery while reducing CO2 emissions associated with traditional teaching methods.

OBJECTIVE

This study aimed to evaluate the carbon dioxide equivalent (CO2e) emissions associated with different delivery methods of the CERTAIN (Checklist for Early Recognition and Treatment of Acute Illness and Injury) global critical care education program. Specifically, we aimed to compare the climate impact of local in-person courses in Rochester, MN, international in-person courses, and online courses to determine the potential environmental benefits of transitioning to digital education platforms.

METHODS

A cross-sectional analysis of CO2e emissions linked to the CERTAIN program was conducted from 2016 to 2022. We compared the climate impact of 3 different course offerings: local in-person at Rochester, MN, international in-person courses, and online courses. The international conferences were conducted in the host country with faculty traveling there to provide the educational content. CO2e emissions were calculated using the "My Climate Flight Calculator" and "Environmental Protection Agency Emission Factors" formulas for travel, conference venues, and online course-related emissions. Learner satisfaction was assessed via validated 5-point Likert surveys.

RESULTS

Local courses had the highest emissions: 52.7 tons/course (2.5 tons/participant), 96% from air travel (50.6tons, P<.001), versus other formats. International courses showed 20.2 tons/course (0.4 tons/participant), of which 93%(18.8 tons) were travel-related. Online courses reduced emissions by 96% per capita (0.1 tons/participant, P<.001) and 89% per course (5.6 tons, P<.001) versus local format. Overall course ratings were either excellent (live 50%, n=136) vs online 44%, n=11) or very good (live 30.9%, n=84 vs online 53%, n=12) for both live and online courses.

CONCLUSIONS

The transition to online delivery of our CERTAIN global education program has led to a substantial reduction in CO2 emissions, mainly by eliminating travel, with similar levels of learner satisfaction. These findings support a strategic shift toward digital medical education platforms to promote environmental responsibility and broaden global educational access.

摘要

背景

气候变化是一个紧迫的公共卫生问题,美国医疗保健部门每年排放约4.79亿吨二氧化碳(CO₂)。在线继续医学教育提供了一种替代解决方案,既能增加全球教育的提供,又能减少与传统教学方法相关的CO₂排放。

目的

本研究旨在评估与全球重症监护教育项目CERTAIN(急性疾病和损伤早期识别与治疗清单)不同授课方式相关的二氧化碳当量(CO₂e)排放。具体而言,我们旨在比较明尼苏达州罗切斯特市的本地面授课程、国际面授课程和在线课程对气候的影响,以确定转向数字教育平台的潜在环境效益。

方法

对2016年至2022年与CERTAIN项目相关的CO₂e排放进行横断面分析。我们比较了三种不同课程形式的气候影响:明尼苏达州罗切斯特市的本地面授课程、国际面授课程和在线课程。国际会议在主办国举行,教员前往该国提供教育内容。使用“我的气候飞行计算器”和美国环境保护局排放因子公式计算旅行、会议场地和在线课程相关排放的CO₂e排放量。通过经过验证的5点李克特量表调查评估学习者满意度。

结果

本地课程的排放量最高:每门课程52.7吨(每位参与者2.5吨),其中96%来自航空旅行(50.6吨,P<0.001),与其他形式相比。国际课程为每门课程20.2吨(每位参与者0.4吨),其中93%(18.8吨)与旅行相关。与本地形式相比,在线课程人均排放量减少了96%(每位参与者0.1吨,P<0.001),每门课程排放量减少了89%(5.6吨,P<0.001)。总体课程评分方面,面授课程和在线课程的评价要么是优秀(面授50%,n = 136;在线44%,n = 11),要么是非常好(面授30.9%,n = 84;在线53%,n = 12)。

结论

我们的CERTAIN全球教育项目向在线授课的转变已导致CO₂排放量大幅减少,主要是通过消除旅行实现的,同时学习者满意度水平相似。这些发现支持向数字医学教育平台的战略转变,以促进环境责任并扩大全球教育覆盖面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf2b/12313308/e0b6957a84c8/formative-v9-e63524-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验