Suppr超能文献

基于自动图形的单细胞RNA测序数据聚类方案及其在小鼠肠道干细胞中的应用

Protocol for automated graph-based clustering of single-cell RNA-seq data with application in mouse intestinal stem cells.

作者信息

Wang Alexander L E, Zanella Luca, Ochiai Yosuke, Golinelli Leonardo, Califano Andrea, Malagola Ermanno, Vasciaveo Alessandro

机构信息

Department of Systems Biology, Columbia University, New York, NY 10032, USA.

Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA.

出版信息

STAR Protoc. 2025 Jul 31;6(3):104000. doi: 10.1016/j.xpro.2025.104000.

Abstract

We present a protocol for isolating highly purified crypt epithelial cells from the mouse intestine for single-cell RNA sequencing (scRNA-seq). Optimized for the mouse jejunum, it can be adapted to all intestinal tracts, including the colon. The pipeline incorporates automated community detection of cell populations (ACDC), a time- and memory-efficient Python package for automated graph-based optimal clustering of large scRNA-seq datasets. We demonstrate its usage to identify cellular populations in an intestinal stem cell dataset and generate publication-ready figures. For complete details on the use and execution of this protocol, please refer to Malagola et al..

摘要

我们展示了一种从小鼠肠道中分离高度纯化的隐窝上皮细胞用于单细胞RNA测序(scRNA-seq)的方案。该方案针对小鼠空肠进行了优化,也可适用于包括结肠在内的所有肠道。该流程纳入了细胞群体的自动社区检测(ACDC),这是一个用于对大型scRNA-seq数据集进行基于图的自动最优聚类的省时且节省内存的Python软件包。我们展示了其在肠道干细胞数据集中识别细胞群体并生成可用于发表的图表的用途。有关此方案的使用和执行的完整详细信息,请参考马拉戈拉等人的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32c6/12337269/73d632eebede/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验