Suppr超能文献

体育锻炼后小脑的生化神经可塑性:系统评价与荟萃分析。

Biochemical neuroplasticity in the cerebellum after physical exercise: Systematic review and meta-analysis.

作者信息

Corrêa Marcio Gonçalves, Lobão Thais Alves, Bahia Gabriel Mesquita da Conceição, Aires Erica Miranda Sanches, Gomes Rebeca da Costa, Medeiros de Queiroz Jeffeson Hildo, Monteiro Marta Chagas, Bahia Carlomagno Pacheco

机构信息

Laboratory of Neuroplasticity - Health Institute Sciences, UFPA, Pará, Brazil.

Laboratory of Laboratory Immunology, Microbiology, and In Vitro Assays - Health Institute Sciences, UFPA, Pará, Brazil.

出版信息

PLoS One. 2025 Aug 1;20(8):e0309259. doi: 10.1371/journal.pone.0309259. eCollection 2025.

Abstract

BACKGROUND

Neuroplasticity is the central nervous system's (CNS) capacity to adapt to injuries or environmental changes. Biochemical neuroplasticity is one such adaptation that may occur in response to physical exercise (PE). This systematic review and meta-analysis aimed to evaluate the effects of PE on cerebellar biochemical neuroplasticity.

METHODS

Following the PICO strategy, this review included in vivo studies with small rodents (Population) subjected to well-defined PE protocols (Intervention) and compared to non-exercised controls (Comparator) to assess cerebellar biochemical alterations (Outcome). Studies published between January 1976 and July 2024 without language restrictions were searched in PubMed, Scopus, Web of Science, and Cochrane Central databases. Data were synthesized through meta-analyses and methodological quality was assessed by the SYRCLE risk of bias tool.

RESULTS

Out of 3,107 records screened, six studies met the inclusion criteria for qualitative and quantitative analyses. All studies had a low or unclear risk of bias. Markers of biochemical neuroplasticity assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GR), reduced glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione disulphide (GSSG) and lipid peroxidation (LPO). Meta-analyses showed that moderate-volume PE significantly reduced LPO (SMD = -2.41; 95% CI: -3.89 to -0.93), while high-volume PE increased LPO (SMD = 4.55; 95% CI: 1.92 to 7.18). Low-intensity or low-volume PE did not significantly alter oxidative markers.

CONCLUSIONS

PE induces either adaptive or maladaptive biochemical neuroplasticity in the cerebellum depending on protocol variables. While enzymatic activity responds to cellular changes and limits nervous tissue protection, adaptive biochemical neuroplasticity seems to confer greater resistance and efficiency.

摘要

背景

神经可塑性是中枢神经系统(CNS)适应损伤或环境变化的能力。生化神经可塑性是一种可能因体育锻炼(PE)而发生的适应性变化。本系统评价和荟萃分析旨在评估体育锻炼对小脑生化神经可塑性的影响。

方法

按照PICO策略,本评价纳入了对小型啮齿动物(研究对象)进行明确体育锻炼方案(干预措施)的体内研究,并与未锻炼的对照组(对照)进行比较,以评估小脑生化改变(结局)。在PubMed、Scopus、科学网和Cochrane Central数据库中检索了1976年1月至2024年7月发表的无语言限制的研究。通过荟萃分析对数据进行综合,并使用SYRCLE偏倚风险工具评估方法学质量。

结果

在筛选的3107条记录中,有6项研究符合定性和定量分析的纳入标准。所有研究的偏倚风险均较低或不明确。评估的生化神经可塑性标志物包括超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)、还原型谷胱甘肽(GSH)、谷胱甘肽过氧化物酶(GSH-Px)、氧化型谷胱甘肽(GSSG)和脂质过氧化(LPO)。荟萃分析表明,中等运动量的体育锻炼显著降低了LPO(标准化均数差[SMD]=-2.41;95%置信区间[CI]:-3.89至-0.93),而大运动量的体育锻炼增加了LPO(SMD=4.55;95%CI:1.92至7.18)。低强度或低运动量的体育锻炼并未显著改变氧化标志物。

结论

根据方案变量,体育锻炼在小脑中可诱导适应性或适应不良性生化神经可塑性。虽然酶活性对细胞变化做出反应并限制神经组织保护,但适应性生化神经可塑性似乎赋予了更大的抵抗力和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb10/12316286/f04bb3e46d39/pone.0309259.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验