Guo Yikun, Zuo Chen, Yan Jun, Ban Chengjun
Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
Beijing University of Chinese Medicine, Beijing, China.
Front Med (Lausanne). 2025 Jul 22;12:1547047. doi: 10.3389/fmed.2025.1547047. eCollection 2025.
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with high incidence and mortality rates. This study aims to identify independent risk factors affecting the mortality risk of COPD patients and construct and validate a nomogram model to provide treatment guidance for COPD patients.
Data from COPD patients in the intensive care unit (ICU) were obtained from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) and the eICU Collaborative Research Database (eICU-CRD). The MIMIC-IV dataset was randomly divided into training and testing sets in a 7:3 ratio for model development and evaluation. External validation was performed using the eICU-CRD dataset. Independent prognostic factors were determined using multivariable Cox regression analysis and incorporated into the nomogram. The performance and clinical applicability of the prediction model were evaluated using the concordance index, receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).
The MIMIC-IV dataset included 2036 COPD patients, and the eICU-CRD dataset included 13,053 COPD patients. The constructed nomogram model included 7 variables: age, weight, APSIII score, ventilation duration, potassium ion, anion gap, and international normalized ratio. Among these factors, ventilator time was a protective factor, while the remaining six factors were independent risk factors. The nomogram demonstrated good accuracy with C-index values of 0.862, 0.874, and 0.722 in the training set, testing set, and external validation set, respectively. The ROC curve indicated good predictive performance of the nomogram model, and the calibration curve and DCA further confirmed the reliability and clinical utility.
This study established a simple and effective nomogram model consisting of 7 variables for evaluating the short-term mortality risk of COPD patients. It provides better recommendations for clinical decision-making and improves the short-term survival rate of COPD patients.
慢性阻塞性肺疾病(COPD)是一种常见的呼吸系统疾病,发病率和死亡率都很高。本研究旨在确定影响COPD患者死亡风险的独立危险因素,并构建和验证列线图模型,为COPD患者提供治疗指导。
从重症监护医学信息集市-IV(MIMIC-IV)和电子重症监护病房协作研究数据库(eICU-CRD)中获取重症监护病房(ICU)中COPD患者的数据。MIMIC-IV数据集以7:3的比例随机分为训练集和测试集,用于模型开发和评估。使用eICU-CRD数据集进行外部验证。采用多变量Cox回归分析确定独立预后因素,并纳入列线图。使用一致性指数、受试者操作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)评估预测模型的性能和临床适用性。
MIMIC-IV数据集包括2036例COPD患者,eICU-CRD数据集包括13053例COPD患者。构建的列线图模型包括7个变量:年龄、体重、急性生理与慢性健康状况评分系统III(APSIII)评分、通气时间、钾离子、阴离子间隙和国际标准化比值。在这些因素中,呼吸机使用时间是一个保护因素,而其余六个因素是独立危险因素。列线图在训练集、测试集和外部验证集中的C指数值分别为0.862、0.874和0.722,显示出良好的准确性。ROC曲线表明列线图模型具有良好的预测性能,校准曲线和DCA进一步证实了其可靠性和临床实用性。
本研究建立了一个由7个变量组成的简单有效的列线图模型,用于评估COPD患者的短期死亡风险。它为临床决策提供了更好的建议,提高了COPD患者的短期生存率。