Suppr超能文献

用于预测性化学振荡器模型的实验引导迭代参数估计

Experimentally Guided Iterative Parameter Estimation for Predictive Chemical Oscillator Models.

作者信息

Le Cacheux Maëlle, Oddone Luca E, Runikhina Sofiya A, Kootstra Johanan, Milias-Argeitis Andreas, Harutyunyan Syuzanna R

机构信息

Stratingh Institute for Chemistry, University of Groningen, Groningen, 9747 AG, the Netherlands.

Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747 AG, the Netherlands.

出版信息

Angew Chem Int Ed Engl. 2025 Sep 15;64(38):e202511413. doi: 10.1002/anie.202511413. Epub 2025 Aug 6.

Abstract

Chemical oscillators are fundamental to dynamic processes in biology, from circadian rhythms to metabolic regulation, inspiring efforts to design synthetic analogues for use in responsive materials, autonomous systems, and molecular computing. However, creating robust and tunable synthetic oscillators remains a major challenge due to the inherent complexity and difficulty of identifying conditions that support sustained oscillations. We herein describe an iterative approach based on mathematical modeling and parameter estimation guided by live experimental data to accurately model the oscillating chemical network. Fitting a kinetic model to the whole chemical network proves considerably more effective and time-efficient than determining reaction rates individually and enables quick screening of various parameters. We apply this method to achieve sustained oscillations in flow when changing various aspects of our recently developed oscillating system, demonstrating its potential to facilitate the development and optimization of organic oscillators as well as offering a general framework for analyzing and optimizing complex synthetic CRNs.

摘要

化学振荡器是生物学动态过程的基础,从昼夜节律到代谢调节,激发了人们设计用于响应材料、自主系统和分子计算的合成类似物的努力。然而,由于识别支持持续振荡的条件具有内在的复杂性和难度,创建强大且可调谐的合成振荡器仍然是一项重大挑战。我们在此描述了一种基于数学建模和参数估计的迭代方法,该方法由实时实验数据指导,以准确模拟振荡化学网络。将动力学模型拟合到整个化学网络比单独确定反应速率要有效得多且节省时间,并能够快速筛选各种参数。我们应用此方法在改变我们最近开发的振荡系统的各个方面时实现流动中的持续振荡,证明了其促进有机振荡器开发和优化的潜力,并为分析和优化复杂的合成化学反应网络提供了一个通用框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e6/12435441/0dbf02c2db5a/ANIE-64-e202511413-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验