Suppr超能文献

来自健康队列的独特认知和功能连接特征能够识别临床强迫症。

Distinct cognitive and functional connectivity features from healthy cohorts can identify clinical obsessive-compulsive disorder.

作者信息

Hearne Luke J, Yeo B T Thomas, Webb Lachlan, Zalesky Andrew, Fitzgerald Paul B, Murphy Oscar W, Tian Ye, Breakspear Michael, Hall Caitlin V, Choi Sunah, Kim Minah, Kwon Jun Soo, Cocchi Luca

机构信息

QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore, Singapore.

出版信息

medRxiv. 2024 Sep 6:2024.09.02.24312960. doi: 10.1101/2024.09.02.24312960.

Abstract

Improving diagnostic accuracy of obsessive-compulsive disorder (OCD) using models of brain imaging data is a key goal of the field, but this objective is challenging due to the limited size and phenotypic depth of clinical datasets. Leveraging the phenotypic diversity in large non-clinical datasets such as the UK Biobank (UKBB), offers a potential solution to this problem. Nevertheless, it remains unclear whether classification models trained on non-clinical populations will generalise to individuals with clinical OCD. This question is also relevant for the conceptualisation of OCD; specifically, whether the symptomology of OCD exists on a continuum from normal to pathological. Here, we examined a recently published "meta-matching" model trained on functional connectivity data from five large normative datasets (N=45,507) to predict cognitive, health and demographic variables. Specifically, we tested whether this model could classify OCD status in three independent clinical datasets (N=345). We found that the model could identify out-of-sample OCD individuals. Notably, the most predictive functional connectivity features mapped onto known cortico-striatal abnormalities in OCD and correlated with genetic brain expression maps previously implicated in the disorder. Further, the meta-matching model relied upon estimates of cognitive functions, such as cognitive flexibility and inhibition, to successfully predict OCD. These findings suggest that variability in non-clinical brain and behavioural features can discriminate clinical OCD status. These results support a dimensional and transdiagnostic conceptualisation of the brain and behavioural basis of OCD, with implications for research approaches and treatment targets.

摘要

利用脑成像数据模型提高强迫症(OCD)的诊断准确性是该领域的一个关键目标,但由于临床数据集规模有限且表型深度不足,这一目标颇具挑战性。利用大型非临床数据集(如英国生物银行,UKBB)中的表型多样性,为解决这一问题提供了一种潜在方案。然而,尚不清楚在非临床人群上训练的分类模型是否能推广到临床强迫症患者。这个问题对于强迫症的概念化也很重要;具体而言,强迫症的症状是否存在于从正常到病理的连续体上。在此,我们研究了一个最近发表的“元匹配”模型,该模型基于来自五个大型标准化数据集(N = 45,507)的功能连接数据进行训练,以预测认知、健康和人口统计学变量。具体来说,我们测试了该模型能否在三个独立的临床数据集(N = 345)中对强迫症状态进行分类。我们发现该模型能够识别样本外的强迫症个体。值得注意的是,最具预测性的功能连接特征映射到强迫症中已知的皮质 - 纹状体异常上,并与先前涉及该疾病的基因脑表达图谱相关。此外,元匹配模型依赖于对认知功能(如认知灵活性和抑制)的估计来成功预测强迫症。这些发现表明,非临床脑和行为特征的变异性可以区分临床强迫症状态。这些结果支持了强迫症脑和行为基础的维度和跨诊断概念化,对研究方法和治疗靶点具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9776/11398446/71923b743efa/nihpp-2024.09.02.24312960v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验