Suppr超能文献

优化石墨烯环形调制器:直线型、弯曲型和跑道型几何结构的比较研究

Optimizing Graphene Ring Modulators: A Comparative Study of Straight, Bent, and Racetrack Geometries.

作者信息

Dubey Pawan Kumar, Raju Ashraful Islam, Lukose Rasuole, Wenger Christian, Lukosius Mindaugas

机构信息

IHP-Leibniz Institut für Innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.

Semiconductor Materials, Brandenburg University of Technology Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany.

出版信息

Nanomaterials (Basel). 2025 Jul 27;15(15):1158. doi: 10.3390/nano15151158.

Abstract

Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design flexibility and require extremely small coupling gaps to reach critical coupling. This work presents a comprehensive comparative analysis of straight, bent, and racetrack bus geometries in graphene-on-silicon nitride (SiN) micro-ring modulators operating near 1.31 µm. Based on finite-difference time-domain simulation results, a proposed racetrack-based modulator structure demonstrates that extending the coupling region enables critical coupling at larger gaps-up to 300 nm-while preserving high modulation efficiency. With only 6-12% graphene coverage, this geometry achieves extinction ratios of up to 28 dB and supports electrical bandwidths approaching 90 GHz. Findings from this work highlight a new co-design framework for coupling geometry and graphene coverage, offering a pathway to high-speed and high-modulation-depth graphene photonic modulators suitable for scalable integration in next-generation photonic interconnects devices.

摘要

基于石墨烯的微环调制器是下一代光互连的有前途的候选者,具有紧凑的尺寸、宽带操作和CMOS兼容性。然而,迄今为止的大多数演示都依赖于传统的直总线耦合几何结构,这限制了设计灵活性,并且需要极小的耦合间隙才能达到临界耦合。这项工作对工作在1.31 µm附近的氮化硅(SiN)上石墨烯微环调制器中的直、弯和跑道形总线几何结构进行了全面的比较分析。基于时域有限差分模拟结果,提出的基于跑道形的调制器结构表明,扩展耦合区域能够在更大的间隙(高达300 nm)下实现临界耦合,同时保持高调制效率。这种几何结构仅用6-12%的石墨烯覆盖率,就能实现高达28 dB的消光比,并支持接近90 GHz的电带宽。这项工作的发现突出了一种用于耦合几何结构和石墨烯覆盖率的新协同设计框架,为适用于下一代光子互连器件中可扩展集成的高速和高调制深度石墨烯光子调制器提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1abc/12348920/527f8c103bd2/nanomaterials-15-01158-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验