Xiang Bingjie, Zheng Renguang, Zhang Kunsan, Li Chaopeng, Zheng Jiachun
School of Ocean Informattion Engineering, Jimei University, Xiamen 361000, China.
State Grid Fujian Electric Power Co., Ltd., Zhangzhou Power Supply Company, No. 13 Shengli East Road, Xiangcheng District, Zhangzhou 363000, China.
Sensors (Basel). 2025 Jul 24;25(15):4584. doi: 10.3390/s25154584.
Resource-constrained Internet of Things (IoT) devices demand efficient and robust intrusion detection systems (IDSs) to counter evolving cyber threats. The traditional IDS models, however, struggle with high computational complexity and inadequate feature extraction, limiting their accuracy and generalizability in IoT environments. To address this, we propose FFT-RDNet, a lightweight IDS framework leveraging depthwise separable convolution and frequency-domain feature fusion. An ADASYN-Tomek Links hybrid strategy first addresses class imbalances. The core innovation of FFT-RDNet lies in its novel two-dimensional spatial feature modeling approach, realized through a dedicated dual-path feature embedding module. One branch extracts discriminative statistical features in the time domain, while the other branch transforms the data into the frequency domain via Fast Fourier Transform (FFT) to capture the essential energy distribution characteristics. These time-frequency domain features are fused to construct a two-dimensional feature space, which is then processed by a streamlined residual network using depthwise separable convolution. This network effectively captures complex periodic attack patterns with minimal computational overhead. Comprehensive evaluation on the NSL-KDD and CIC-IDS2018 datasets shows that FFT-RDNet outperforms state-of-the-art neural network IDSs across accuracy, precision, recall, and F1 score (improvements: 0.22-1%). Crucially, it achieves superior accuracy with a significantly reduced computational complexity, demonstrating high efficiency for resource-constrained IoT security deployments.
资源受限的物联网(IoT)设备需要高效且强大的入侵检测系统(IDS)来应对不断演变的网络威胁。然而,传统的IDS模型存在计算复杂度高和特征提取不足的问题,限制了它们在物联网环境中的准确性和通用性。为了解决这个问题,我们提出了FFT-RDNet,这是一个利用深度可分离卷积和频域特征融合的轻量级IDS框架。一种ADASYN-Tomek Links混合策略首先解决了类别不平衡问题。FFT-RDNet的核心创新在于其新颖的二维空间特征建模方法,通过一个专门的双路径特征嵌入模块实现。一个分支在时域中提取有判别力的统计特征,而另一个分支通过快速傅里叶变换(FFT)将数据转换到频域,以捕捉基本的能量分布特征。这些时频域特征被融合以构建二维特征空间,然后由一个使用深度可分离卷积的简化残差网络进行处理。该网络以最小的计算开销有效地捕捉复杂的周期性攻击模式。在NSL-KDD和CIC-IDS2018数据集上的综合评估表明,FFT-RDNet在准确性、精确率、召回率和F1分数方面优于现有的神经网络IDS(提高了0.22%-1%)。至关重要的是,它在显著降低计算复杂度的情况下实现了卓越的准确性,证明了在资源受限的物联网安全部署中的高效性。