Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
Bioinformatics Platform, Luxembourg Institute of Health, Strassen, Luxembourg.
Nat Commun. 2024 May 20;15(1):4259. doi: 10.1038/s41467-024-47557-1.
Tools for predicting COVID-19 outcomes enable personalized healthcare, potentially easing the disease burden. This collaborative study by 15 institutions across Europe aimed to develop a machine learning model for predicting the risk of in-hospital mortality post-SARS-CoV-2 infection. Blood samples and clinical data from 1286 COVID-19 patients collected from 2020 to 2023 across four cohorts in Europe and Canada were analyzed, with 2906 long non-coding RNAs profiled using targeted sequencing. From a discovery cohort combining three European cohorts and 804 patients, age and the long non-coding RNA LEF1-AS1 were identified as predictive features, yielding an AUC of 0.83 (95% CI 0.82-0.84) and a balanced accuracy of 0.78 (95% CI 0.77-0.79) with a feedforward neural network classifier. Validation in an independent Canadian cohort of 482 patients showed consistent performance. Cox regression analysis indicated that higher levels of LEF1-AS1 correlated with reduced mortality risk (age-adjusted hazard ratio 0.54, 95% CI 0.40-0.74). Quantitative PCR validated LEF1-AS1's adaptability to be measured in hospital settings. Here, we demonstrate a promising predictive model for enhancing COVID-19 patient management.
用于预测 COVID-19 结果的工具能够实现个性化医疗,可能会减轻疾病负担。这项由欧洲 15 个机构合作开展的研究旨在开发一种机器学习模型,以预测 SARS-CoV-2 感染后住院死亡率的风险。该研究分析了来自欧洲和加拿大四个队列的 1286 名 COVID-19 患者的血液样本和临床数据,使用靶向测序对 2906 个长非编码 RNA 进行了分析。从一个由三个欧洲队列和 804 名患者组成的发现队列中,确定年龄和长非编码 RNA LEF1-AS1 是预测特征,得出 AUC 为 0.83(95%CI 0.82-0.84),平衡准确性为 0.78(95%CI 0.77-0.79),使用前馈神经网络分类器。在一个由 482 名患者组成的独立加拿大队列中的验证显示出一致的性能。Cox 回归分析表明,较高的 LEF1-AS1 水平与降低的死亡率风险相关(年龄调整后的危险比 0.54,95%CI 0.40-0.74)。定量 PCR 验证了 LEF1-AS1 可在医院环境中进行测量的适应性。在这里,我们展示了一种有前途的预测模型,用于增强 COVID-19 患者的管理。