Suppr超能文献

淋巴细胞网络是肺腺癌免疫调节景观中的动态细胞群落。

Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma.

机构信息

Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97212, USA; School of Medicine, Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR 97212, USA.

出版信息

Cancer Cell. 2023 May 8;41(5):871-886.e10. doi: 10.1016/j.ccell.2023.03.015. Epub 2023 Apr 13.

Abstract

Lymphocytes are key for immune surveillance of tumors, but our understanding of the spatial organization and physical interactions that facilitate lymphocyte anti-cancer functions is limited. We used multiplexed imaging, quantitative spatial analysis, and machine learning to create high-definition maps of lung tumors from a Kras/Trp53-mutant mouse model and human resections. Networks of interacting lymphocytes ("lymphonets") emerged as a distinctive feature of the anti-cancer immune response. Lymphonets nucleated from small T cell clusters and incorporated B cells with increasing size. CXCR3-mediated trafficking modulated lymphonet size and number, but T cell antigen expression directed intratumoral localization. Lymphonets preferentially harbored TCF1 PD-1 progenitor CD8 T cells involved in responses to immune checkpoint blockade (ICB) therapy. Upon treatment of mice with ICB or an antigen-targeted vaccine, lymphonets retained progenitor and gained cytotoxic CD8 T cell populations, likely via progenitor differentiation. These data show that lymphonets create a spatial environment supportive of CD8 T cell anti-tumor responses.

摘要

淋巴细胞是肿瘤免疫监测的关键,但我们对于促进淋巴细胞抗癌功能的空间组织和物理相互作用的理解有限。我们使用多重成像、定量空间分析和机器学习,为 Kras/Trp53 突变的小鼠模型和人类切除物的肺部肿瘤创建了高清晰度图谱。相互作用的淋巴细胞网络(“淋巴网”)成为抗癌免疫反应的一个显著特征。淋巴网从小 T 细胞簇开始形成,并随着体积的增大纳入 B 细胞。CXCR3 介导的迁移调节了淋巴网的大小和数量,但 T 细胞抗原表达指导肿瘤内定位。淋巴网优先包含 TCF1 PD-1 祖细胞 CD8 T 细胞,这些细胞参与免疫检查点阻断 (ICB) 治疗的反应。在对小鼠进行 ICB 或抗原靶向疫苗治疗后,淋巴网保留了祖细胞并获得了细胞毒性 CD8 T 细胞群体,可能通过祖细胞分化。这些数据表明,淋巴网创造了一个支持 CD8 T 细胞抗肿瘤反应的空间环境。

相似文献

1
Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma.
Cancer Cell. 2023 May 8;41(5):871-886.e10. doi: 10.1016/j.ccell.2023.03.015. Epub 2023 Apr 13.
2
Antigen dominance hierarchies shape TCF1 progenitor CD8 T cell phenotypes in tumors.
Cell. 2021 Sep 16;184(19):4996-5014.e26. doi: 10.1016/j.cell.2021.08.020.
5
Blocking LTB signaling-mediated TAMs recruitment by Rhizoma Coptidis sensitizes lung cancer to immunotherapy.
Phytomedicine. 2023 Oct;119:154968. doi: 10.1016/j.phymed.2023.154968. Epub 2023 Jul 22.
6
Recent Advances in Lung Cancer Immunotherapy: Input of T-Cell Epitopes Associated With Impaired Peptide Processing.
Front Immunol. 2019 Jul 3;10:1505. doi: 10.3389/fimmu.2019.01505. eCollection 2019.
7
MAX transcriptionally enhances PD-L1 to inhibit CD8+ T cell-mediated killing of lung adenocarcinoma cells.
Cell Immunol. 2023 Apr;386:104706. doi: 10.1016/j.cellimm.2023.104706. Epub 2023 Mar 9.

引用本文的文献

1
Spatial morphoproteomic features predict disease states from tissue architectures.
iScience. 2025 Jul 24;28(8):113204. doi: 10.1016/j.isci.2025.113204. eCollection 2025 Aug 15.
2
The tumor microenvironment's role in the response to immune checkpoint blockade.
Nat Cancer. 2025 Jun 13. doi: 10.1038/s43018-025-00986-3.
3
The diversity of CD8 T cell dysfunction in cancer and viral infection.
Nat Rev Immunol. 2025 Apr 11. doi: 10.1038/s41577-025-01161-6.
4
5
Tissue-specific properties of type 1 dendritic cells in lung cancer: implications for immunotherapy.
J Immunother Cancer. 2025 Mar 25;13(3):e010547. doi: 10.1136/jitc-2024-010547.
6
Nomogram Prediction of Response to Neoadjuvant Chemotherapy Plus Pembrolizumab in Locally Advanced Hypopharyngeal Squamous Cell Carcinoma.
J Otolaryngol Head Neck Surg. 2025 Jan-Dec;54:19160216251318255. doi: 10.1177/19160216251318255.
7
Lung DC-T immunity hub in immune surveillance: new concepts and future directions.
Cancer Commun (Lond). 2025 Mar;45(3):209-214. doi: 10.1002/cac2.12643. Epub 2024 Dec 17.
9
Quality control for single-cell analysis of high-plex tissue profiles using CyLinter.
Nat Methods. 2024 Dec;21(12):2248-2259. doi: 10.1038/s41592-024-02328-0. Epub 2024 Oct 30.
10
Spatial analysis by current multiplexed imaging technologies for the molecular characterisation of cancer tissues.
Br J Cancer. 2024 Dec;131(11):1737-1747. doi: 10.1038/s41416-024-02882-6. Epub 2024 Oct 22.

本文引用的文献

1
Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer.
Cell. 2023 Jan 19;186(2):363-381.e19. doi: 10.1016/j.cell.2022.12.028.
2
Visinity: Visual Spatial Neighborhood Analysis for Multiplexed Tissue Imaging Data.
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):106-116. doi: 10.1109/TVCG.2022.3209378. Epub 2022 Dec 16.
3
Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR.
Bioinformatics. 2022 Sep 30;38(19):4613-4621. doi: 10.1093/bioinformatics/btac544.
4
Deciphering the immunopeptidome in vivo reveals new tumour antigens.
Nature. 2022 Jul;607(7917):149-155. doi: 10.1038/s41586-022-04839-2. Epub 2022 Jun 15.
5
The Spatial Landscape of Progression and Immunoediting in Primary Melanoma at Single-Cell Resolution.
Cancer Discov. 2022 Jun 2;12(6):1518-1541. doi: 10.1158/2159-8290.CD-21-1357.
6
B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome.
Nat Rev Clin Oncol. 2022 Jul;19(7):441-457. doi: 10.1038/s41571-022-00619-z. Epub 2022 Apr 1.
7
Temporal and spatial topography of cell proliferation in cancer.
Nat Cell Biol. 2022 Mar;24(3):316-326. doi: 10.1038/s41556-022-00860-9. Epub 2022 Mar 15.
8
Hallmarks of Cancer: New Dimensions.
Cancer Discov. 2022 Jan;12(1):31-46. doi: 10.1158/2159-8290.CD-21-1059.
9
Tertiary lymphoid structures in cancer.
Science. 2022 Jan 7;375(6576):eabf9419. doi: 10.1126/science.abf9419.
10
Multicellular modules as clinical diagnostic and therapeutic targets.
Trends Cancer. 2022 Mar;8(3):164-173. doi: 10.1016/j.trecan.2021.11.004. Epub 2021 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验