Suppr超能文献

评估图神经网络的可解释性。

Evaluating explainability for graph neural networks.

机构信息

Media and Data Science Research Lab, Adobe, Noida, 201304, India.

Department of Biomedical Informatics, Harvard University, Boston, MA, 02115, USA.

出版信息

Sci Data. 2023 Mar 18;10(1):144. doi: 10.1038/s41597-023-01974-x.

Abstract

As explanations are increasingly used to understand the behavior of graph neural networks (GNNs), evaluating the quality and reliability of GNN explanations is crucial. However, assessing the quality of GNN explanations is challenging as existing graph datasets have no or unreliable ground-truth explanations. Here, we introduce a synthetic graph data generator, SHAPEGGEN, which can generate a variety of benchmark datasets (e.g., varying graph sizes, degree distributions, homophilic vs. heterophilic graphs) accompanied by ground-truth explanations. The flexibility to generate diverse synthetic datasets and corresponding ground-truth explanations allows SHAPEGGEN to mimic the data in various real-world areas. We include SHAPEGGEN and several real-world graph datasets in a graph explainability library, GRAPHXAI. In addition to synthetic and real-world graph datasets with ground-truth explanations, GRAPHXAI provides data loaders, data processing functions, visualizers, GNN model implementations, and evaluation metrics to benchmark GNN explainability methods.

摘要

随着解释越来越多地被用来理解图神经网络 (GNN) 的行为,评估 GNN 解释的质量和可靠性至关重要。然而,评估 GNN 解释的质量具有挑战性,因为现有的图数据集没有或没有可靠的真实解释。在这里,我们引入了一种合成图数据生成器 SHAPEGGEN,它可以生成各种基准数据集(例如,不同的图大小、度分布、同配性与异配性图)以及真实解释。生成多样化的合成数据集和相应真实解释的灵活性使 SHAPEGGEN 能够模拟各种真实世界领域的数据。我们在图可解释性库 GRAPHXAI 中包含了 SHAPEGGEN 和几个真实世界的图数据集。除了具有真实解释的合成和真实世界的图数据集外,GRAPHXAI 还提供了数据加载器、数据处理功能、可视化工具、GNN 模型实现和评估指标,以对 GNN 可解释性方法进行基准测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce26/10024712/c9460149756f/41597_2023_1974_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验