Jiang Cheng, Zhu Chunzheng, Guo Hongbo, Tan Guanghua, Liu Chubo, Li Kenli
IEEE J Biomed Health Inform. 2025 Aug 18;PP. doi: 10.1109/JBHI.2025.3599716.
The shape and size of the placenta are closely related to fetal development in the second and third trimesters of pregnancy. Accurately segmenting the placental contour in ultrasound images is a challenge because it is limited by image noise, fuzzy boundaries, and tight clinical resources. To address these issues, we propose MCBL-UNet, a novel lightweight segmentation framework that combines the long-range modeling capabilities of Mamba and the local feature extraction advantages of convolutional neural networks (CNNs) to achieve efficient segmentation through multi-information fusion. Based on a compact 6-layer U-Net architecture, MCBL-UNet introduces several key modules: a boundary enhancement module (BEM) to extract fine-grained edge and texture features; a multi-dimensional global context module (MGCM) to capture global semantics and edge information in the deep stages of the encoder and decoder; and a parallel channel spatial attention module (PCSAM) to suppress redundant information in skip connections while enhancing spatial and channel correlations. To further improve feature reconstruction and edge preservation capabilities, we introduce an attention downsampling module (ADM) and a content-aware upsampling module (CUM). MCBL-UNet has achieved excellent segmentation performance on multiple medical ultrasound datasets (placenta, gestational sac, thyroid nodules). Using only 1.31M parameters and 1.26G FLOPs, the model outperforms 13 existing mainstream methods in key indicators such as Dice coefficient and mIoU, showing a perfect balance between high accuracy and low computational cost. This model is not only suitable for resource-constrained clinical environments, but also provides a new idea for introducing the Mamba structure into medical image segmentation.
胎盘的形状和大小与妊娠中期和晚期的胎儿发育密切相关。在超声图像中准确分割胎盘轮廓是一项挑战,因为它受到图像噪声、边界模糊和临床资源紧张的限制。为了解决这些问题,我们提出了MCBL-UNet,这是一种新颖的轻量级分割框架,它结合了Mamba的远程建模能力和卷积神经网络(CNN)的局部特征提取优势,通过多信息融合实现高效分割。基于紧凑的6层U-Net架构,MCBL-UNet引入了几个关键模块:边界增强模块(BEM),用于提取细粒度的边缘和纹理特征;多维全局上下文模块(MGCM),用于在编码器和解码器的深层阶段捕获全局语义和边缘信息;以及并行通道空间注意力模块(PCSAM),用于抑制跳跃连接中的冗余信息,同时增强空间和通道相关性。为了进一步提高特征重建和边缘保留能力,我们引入了注意力下采样模块(ADM)和内容感知上采样模块(CUM)。MCBL-UNet在多个医学超声数据集(胎盘、妊娠囊、甲状腺结节)上取得了优异的分割性能。该模型仅使用131万个参数和12.6亿次浮点运算,在Dice系数和平均交并比等关键指标上优于13种现有的主流方法,在高精度和低计算成本之间实现了完美平衡。该模型不仅适用于资源受限的临床环境,还为将Mamba结构引入医学图像分割提供了新思路。