Suppr超能文献

使用逻辑回归模型预测约旦卡拉克市的新冠肺炎感染情况。

Predicting infection with COVID-19 disease using logistic regression model in Karak City, Jordan.

作者信息

Khaleel Anas, Abu Dayyih Wael, AlTamimi Lina, Dalaeen Liana, Zakaraya Zainab, Ahmad Alhareth, Albadareen Baker, Elbakkoush Abdallah Ahmed

机构信息

Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy, Petra University, Amman, Jordan.

Faculty of Pharmacy, Mutah University, Karak-61710, Jordan.

出版信息

F1000Res. 2023 Apr 3;12:126. doi: 10.12688/f1000research.129799.2. eCollection 2023.

Abstract

: On March 2020, World Health Organization (WHO) labeled coronavirus disease 2019 (COVID-19) as a pandemic. COVID-19 has rapidly increased in Jordan which resulted in the announcement of the emergency state on March 19th, 2020. Despite the variety of research being reported, there is no agreement on the variables that predict COVID-19 infection. We have analyzed the data collected from Karak city citizens to predict the probability of infection with COVID-19 using binary logistic regression model. Based on data collected by Google sheet of COVID-19 infected and non-infected persons in Karak city, analysis was applied to predict COVID-19 infection probability using a binary logistic regression model. The ultimate logistic regression model provides the formula of COVID-19 infection probability based on sex and age variables. Given a person's age and sex, the final model presented in this study can be used to calculate the probability of infection with COVID-19 in Karak city. This could help aid health-care management and policymakers in properly planning and allocating health-care resources.

摘要

2020年3月,世界卫生组织(WHO)将2019冠状病毒病(COVID-19)列为大流行病。COVID-19在约旦迅速蔓延,导致2020年3月19日宣布进入紧急状态。尽管有各种各样的研究报告,但对于预测COVID-19感染的变量尚无定论。我们分析了从卡拉克市市民收集的数据,使用二元逻辑回归模型预测感染COVID-19的概率。基于通过谷歌表格收集的卡拉克市COVID-19感染者和未感染者的数据,应用分析方法使用二元逻辑回归模型预测COVID-19感染概率。最终的逻辑回归模型提供了基于性别和年龄变量的COVID-19感染概率公式。根据一个人的年龄和性别,本研究中提出的最终模型可用于计算卡拉克市感染COVID-19的概率。这有助于协助医疗保健管理部门和政策制定者合理规划和分配医疗保健资源。

相似文献

3
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.用于 SARS-CoV-2 感染诊断的快速、即时抗原检测。
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.

本文引用的文献

7
Study of climatology parameters on COVID-19 outbreak in Jordan.约旦新冠疫情的气候学参数研究
Environ Earth Sci. 2022;81(8):228. doi: 10.1007/s12665-022-10348-2. Epub 2022 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验