文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SPEX:用于高分辨率组织空间组学分析的模块化端到端平台。

SPEX: A modular end-to-end platform for high-plex tissue spatial omics analysis.

作者信息

Li Xiao, Pechuan-Jorge Ximo, Risom Tyler, Foo Conrad, Prilipko Alexander, Zubkov Artem, Chan Caleb, Chang Patrick, Peale Frank, Ziai James, Rost Sandra, Hibar Derrek, McGinnis Lisa, Tabatsky Evgeniy, Ye Xin, Bravo Hector Corrada, Shi Zhen, Nowicka Malgorzata, Scherdin Jon, Cowan James, Giltnane Jennifer, Orlova Darya, Jesudason Rajiv

机构信息

Genentech, Inc., South San Francisco 94080, CA, USA.

Roche Diagnostics Solutions, Santa Clara, CA 95050, USA.

出版信息

Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf090.


DOI:10.1093/gigascience/giaf090
PMID:40880135
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12395962/
Abstract

Recent advancements in transcriptomics and proteomics have opened the possibility for spatially resolved molecular characterization of tissue architecture with the promise of enabling a deeper understanding of tissue biology in either homeostasis or disease. The wealth of data generated by these technologies has recently driven the development of a wide range of computational methods. These methods have the requirement of advanced coding fluency to be applied and integrated across the full spatial omics analysis process, thus presenting a hurdle for widespread adoption by the biology research community. To address this, we introduce SPEX (Spatial Expression Explorer), a web-based analysis platform that employs modular analysis pipeline design, accessible through a user-friendly interface. SPEX's infrastructure allows for streamlined access to open-source image data management systems, analysis modules, and fully integrated data visualization solutions. Analysis modules include essential steps covering image processing, single-cell analysis, and spatial analysis. We demonstrate SPEX's ability to facilitate the discovery of biological insights in spatially resolved omics datasets from healthy tissue to tumor samples.

摘要

转录组学和蛋白质组学的最新进展为组织结构的空间分辨分子表征带来了可能性,有望在稳态或疾病状态下更深入地理解组织生物学。这些技术产生的大量数据最近推动了多种计算方法的发展。这些方法需要具备先进的编码能力才能在整个空间组学分析过程中应用和整合,这给生物学研究界的广泛采用带来了障碍。为了解决这一问题,我们推出了SPEX(空间表达探索器),这是一个基于网络的分析平台,采用模块化分析流程设计,可通过用户友好的界面访问。SPEX的基础设施允许简化对开源图像数据管理系统、分析模块和完全集成的数据可视化解决方案的访问。分析模块包括涵盖图像处理、单细胞分析和空间分析的基本步骤。我们展示了SPEX在促进从健康组织到肿瘤样本的空间分辨组学数据集中发现生物学见解的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e38/12395962/1a49f238c96a/giaf090fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e38/12395962/eaea27dbf9b8/giaf090fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e38/12395962/fccc70de205b/giaf090fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e38/12395962/9227b165ed47/giaf090fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e38/12395962/9c2125173782/giaf090fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e38/12395962/1a49f238c96a/giaf090fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e38/12395962/eaea27dbf9b8/giaf090fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e38/12395962/fccc70de205b/giaf090fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e38/12395962/9227b165ed47/giaf090fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e38/12395962/9c2125173782/giaf090fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e38/12395962/1a49f238c96a/giaf090fig5.jpg

相似文献

[1]
SPEX: A modular end-to-end platform for high-plex tissue spatial omics analysis.

Gigascience. 2025-1-6

[2]
Spatial proteomics and transcriptomics characterization of tissue and multiple cancer types including decalcified marrow.

Cancer Biomark. 2025-1

[3]
GRAPEVNE - Graphical Analytical Pipeline Development Environment for Infectious Diseases.

Wellcome Open Res. 2025-5-27

[4]
PRISM: a Python package for interactive and integrated analysis of multiplexed tissue microarrays.

NAR Genom Bioinform. 2025-8-21

[5]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[6]
MIST-Explorer: The Comprehensive Toolkit for Spatial Omic Analysis and Visualization of Single-Cell MIST Array Data.

bioRxiv. 2025-5-4

[7]
Graph neural networks for single-cell omics data: a review of approaches and applications.

Brief Bioinform. 2025-3-4

[8]
SPAC: a scalable, integrated enterprise platform for end-to-end single cell spatial analysis of multiplexed tissue imaging.

bioRxiv. 2025-4-8

[9]
An end-to-end workflow for multiplexed image processing and analysis.

Nat Protoc. 2023-11

[10]
Linking transcriptome and morphology in bone cells at cellular resolution with generative AI.

J Bone Miner Res. 2024-12-31

引用本文的文献

[1]
Graphical and Interactive Spatial Proteomics Image Analysis Workflow.

bioRxiv. 2025-5-27

本文引用的文献

[1]
Vitessce: integrative visualization of multimodal and spatially resolved single-cell data.

Nat Methods. 2025-1

[2]
Spatially resolved transcriptomics: advances and applications.

Blood Sci. 2022-11-4

[3]
decoupleR: ensemble of computational methods to infer biological activities from omics data.

Bioinform Adv. 2022-3-8

[4]
Identification of cell types in multiplexed in situ images by combining protein expression and spatial information using CELESTA.

Nat Methods. 2022-6

[5]
ATHENA: analysis of tumor heterogeneity from spatial omics measurements.

Bioinformatics. 2022-5-26

[6]
Museum of spatial transcriptomics.

Nat Methods. 2022-5

[7]
Spatial components of molecular tissue biology.

Nat Biotechnol. 2022-3

[8]
Squidpy: a scalable framework for spatial omics analysis.

Nat Methods. 2022-2

[9]
Spatial omics: Navigating to the golden era of cancer research.

Clin Transl Med. 2022-1

[10]
Advances in spatial transcriptomic data analysis.

Genome Res. 2021-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索