Suppr超能文献

循环miR-146、miR-221和miR-222在甲状腺乳头状癌中的诊断准确性:一项系统评价和荟萃分析。

Diagnostic accuracy of circulating miR-146, miR-221 and miR-222 in papillary thyroid cancer: A systematic review and meta-analysis.

作者信息

Dean Benjamin, Geropoulos Georgios, Richardson-Jones Toby, Fornasiero Massimiliano, Papapanou Michail, Konstantinidis Christos, Madouros Nikolaos, Spinos Dimitrios, Koimtzis Georgios, Giannis Dimitrios, Athanasiou Christos, Psarras Kyriakos

机构信息

Department of Transplant Surgery, Cambridge University Hospitals, Cambridge CB20QQ, Cambridgeshire, United Kingdom.

Medical School, University of Bristol, Bristol BS81QU, United Kingdom.

出版信息

World J Clin Cases. 2025 Sep 26;13(27):104916. doi: 10.12998/wjcc.v13.i27.104916.

Abstract

BACKGROUND

Papillary thyroid cancer (PTC) often recurs following surgical excision, necessitating reliable long-term screening techniques after initial management. Ultrasound scans have a poor predictive value and biopsy and genetic testing have a low sensitivity. Biomarker detection, including thyroglobulin, has reduced accuracy as residual thyroid tissue remains following surgery. Serum/tissue microRNA detection offers a promising alternative to screen for thyroid malignancy. Based on our previous systematic review, miR-146, miR-221 and miR-222 appear most strongly associated with PTC.

AIM

To perform a systematic review and meta-analysis, evaluating the use of circulating miR-146, miRNA-221 and miR-222 in PTC diagnosis and staging.

METHODS

A systematic literature search of MEDLINE, Scopus and the EMBASE library was performed. Human participants of any age, sex or geographical distribution were considered. Original studies assessing the diagnostic and prognostic accuracy of circulating serum miRNAs in histologically-confirmed PTC were included. Proportion and regression meta-analyses (logit-transformed) were conducted. PRISMA guidelines were followed throughout the process.

RESULTS

Among the 1530 studies screened, 6 met the inclusion criteria, reporting non-overlapping populations. For the diagnosis of PTC benign nodules (BN), the pooled sensitivity of miR-146 was 80.7% (95%CI: 65.2%-90.4%), specificity was 66.9% (95%CI: 55.5%-76.6%), and false positive rate was 33.1% (95%CI: 23.4%-44.5%). Pooled sensitivity, specificity and false positive rate of miR-222 for diagnosis of PTC BN was 64.3% (95%CI: 50.3%-76.2%), 88.8% (95%CI: 82.4%-93%) and 11.2% (95%CI: 7%-17.6%) respectively. Pooled sensitivity, specificity and false positive rate of miR-221 in this population demonstrated reduced accuracy. Pooled sensitivity and specificity of PTC healthy controls for total serum miRNAs were 82% (95%CI: 77%-86%) and 84% (95%CI: 76%-90%) respectively. The summary area under receiver operating characteristic curve value for the same analysis was 0.89 (95%CI: 0.86-0.92).

CONCLUSION

miRNA-146 and miRNA-222 were most sensitive, validating their efficacy in PTC diagnosis. Larger studies are needed for confident population generalisability. Use of two-MRNA types in conjunction needs to be assessed.

摘要

背景

甲状腺乳头状癌(PTC)在手术切除后常复发,因此在初始治疗后需要可靠的长期筛查技术。超声扫描预测价值低,活检和基因检测敏感性低。包括甲状腺球蛋白在内的生物标志物检测,由于术后仍有残留甲状腺组织,其准确性降低。血清/组织微小RNA检测为筛查甲状腺恶性肿瘤提供了一种有前景的替代方法。根据我们之前的系统评价,miR-146、miR-221和miR-222似乎与PTC关联最为密切。

目的

进行一项系统评价和荟萃分析,评估循环miR-146、miR-221和miR-222在PTC诊断和分期中的应用。

方法

对MEDLINE、Scopus和EMBASE数据库进行系统文献检索。纳入任何年龄、性别或地理分布的人类参与者。纳入评估经组织学确诊的PTC中循环血清微小RNA诊断和预后准确性的原始研究。进行比例和回归荟萃分析(对数转换)。整个过程遵循PRISMA指南。

结果

在筛选的1530项研究中,6项符合纳入标准,报告的人群不重叠。对于PTC与良性结节(BN)的诊断,miR-146的合并敏感性为80.7%(95%CI:65.2%-90.4%),特异性为66.9%(95%CI:55.5%-76.6%),假阳性率为33.1%(95%CI:23.4%-44.5%)。miR-222诊断PTC与BN的合并敏感性、特异性和假阳性率分别为64.3%(95%CI:50.3%-76.2%)、88.8%(95%CI:82.4%-93%)和11.2%(95%CI:7%-17.6%)。该人群中miR-221的合并敏感性、特异性和假阳性率显示准确性降低。PTC与健康对照的总血清微小RNA的合并敏感性和特异性分别为82%(95%CI:77%-86%)和84%(95%CI:76%-90%)。同一分析的受试者工作特征曲线下面积汇总值为0.89(95%CI:0.86-(此处原文可能有误,推测应为0.92))。

结论

miRNA-146和miRNA-222最敏感,验证了它们在PTC诊断中的有效性。需要进行更大规模的研究以确保能推广至普通人群。需要评估联合使用两种微小RNA类型的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04b8/12362446/fabfcca5321a/wjcc-13-27-104916-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验