Sun Heqi, Li Jiayi, Zhang Yufang, Lin Shenggeng, Chen Junwei, Tan Hong, Wang Ruixuan, Mao Xueying, Zhao Jianwei, Li Rongpei, Wei Dong-Qing
State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Qihe Laboratory, Qishui Guang East, Qibin District, Hebi, 458030, China.
Interdiscip Sci. 2025 Sep 2. doi: 10.1007/s12539-025-00756-w.
Protein-protein interactions (PPIs) are essential therapeutic targets, yet their large and relatively flat interfaces hinder the development of small-molecule inhibitors. Traditional computational approaches rely heavily on existing chemical libraries or expert heuristics, restricting exploration of novel chemical space. To address these challenges, we present Hot2Mol, a generative deep learning framework for the de novo design of target-specific and drug-like PPI inhibitors. Hot2Mol captures crucial pharmacophoric features from hot-spot residues, allowing precise targeting of PPI interfaces while eliminating the need for known bioactive ligands. The framework integrates three main components: a conditional transformer for pharmacophore-guided, property-constrained molecular generation; an E(n)-equivariant graph neural network to ensure accurate spatial alignment with PPI hot-spot pharmacophores; a variational autoencoder to sample novel and diverse molecular structures. Comprehensive assessments demonstrate that Hot2Mol outperforms state-of-the-art models in binding affinity, drug-likeness, synthetic accessibility, novelty, and uniqueness. Molecular dynamics simulations further confirm the strong binding stability of generated compounds. Case studies underscore Hot2Mol's ability to design high-affinity and selective PPI inhibitors, highlighting its potential to accelerate rational PPI-targeted drug discovery.
蛋白质-蛋白质相互作用(PPIs)是重要的治疗靶点,但其较大且相对扁平的界面阻碍了小分子抑制剂的开发。传统的计算方法严重依赖现有的化学文库或专家启发式方法,限制了对新型化学空间的探索。为应对这些挑战,我们提出了Hot2Mol,这是一种用于从头设计靶向特定靶点且具有药物特性的PPI抑制剂的生成式深度学习框架。Hot2Mol从热点残基中捕捉关键的药效团特征,能够精确靶向PPI界面,同时无需已知的生物活性配体。该框架集成了三个主要组件:一个用于药效团引导、性质受限分子生成的条件变换器;一个E(n)等变图神经网络,以确保与PPI热点药效团精确的空间对齐;一个变分自编码器,用于对新颖多样的分子结构进行采样。综合评估表明,Hot2Mol在结合亲和力、药物相似性、合成可及性、新颖性和独特性方面优于现有最先进的模型。分子动力学模拟进一步证实了所生成化合物的强结合稳定性。案例研究强调了Hot2Mol设计高亲和力和选择性PPI抑制剂的能力,突出了其加速合理的PPI靶向药物发现的潜力。