Liu Xinyu, Yang Lanqing, Zhang Yu, Hu Sixian, Hu Yunlong, Sun Ruolan, Qin Meng, Chen Jie, Zhang Xiaoyong, Yin Ting, Benkert Thomas, Li Zhenlin, Xia Chunchao
Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
Clinical Science, Philips Healthcare, Chengdu, China.
Abdom Radiol (NY). 2025 Sep 3. doi: 10.1007/s00261-025-05189-z.
This study aimed to compare the diagnostic performance of 2 fat suppression techniques in diffusion-weighted imaging (DWI) for detecting and assessing focal liver lesions (FLLs): water excitation spectral heterogeneity adaptive radiofrequency pulses (WE-SHARP) and conventional spectral adiabatic inversion recovery (SPAIR).
This prospective study enrolled eligible participants between October 2023 and August 2024. Various DWI techniques at 3T, SPAIR-DWI, WE-SHARP-DWI, and WE-SHARP-DWI with correction algorithms (WE-SHARP-DWI*), acquired at b values of 50, 400, 800, and 1200 s/mm², were used to evaluate FLLs. Two radiologists independently assessed several subjective image quality parameters: liver edge sharpness, vessel delineation, lesion conspicuity, fat suppression effectiveness, artifacts, and overall image quality. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) values were also measured. The diagnostic performance of all 3 sequences was evaluated using receiver operating characteristic (ROC) curve analysis.
The study included 158 patients (67 with malignant and 91 with benign lesions) and 25 volunteers. Compared with SPAIR-DWI, the subjective image quality parameters were superior for both WE-SHARP sequences (P < .001). SNR increased 2.15-fold with WE-SHARP-DWI and 2.93-fold with WE-SHARP-DWI*. CNR also improved substantially with the WE-SHARP sequences (30.75 ± 36.83 and 42.43 ± 53.23 vs. 13.49 ± 14.39). Further, WE-SHARP sequences demonstrated lower ADC measurement variability with lower standard deviations (32.80 ± 19.13 × 10⁻³ mm²/s and 34.39 ± 18.22 × 10⁻³ mm²/s vs. 51.48 ± 17.89 × 10⁻³ mm²/s) in normal liver and more pronounced ADC differences between benign and malignant lesions (1179 × 10 mm²/s and 1197 × 10 mm²/s vs. 1009 × 10 mm²/s.). The WE-SHARP-DWI techniques demonstrated improved diagnostic performance with higher sensitivity (0.95 vs. 0.88) and greater area under the ROC curve (0.98 vs. 0.95) compared with SPAIR-DWI.
Both WE-SHARP-DWI techniques demonstrated superior image quality and diagnostic value for assessing FLLs than the conventional SPAIR technique. These techniques retained clinically acceptable image quality even at high b values.
本研究旨在比较两种脂肪抑制技术在扩散加权成像(DWI)中检测和评估肝脏局灶性病变(FLLs)的诊断性能:水激发频谱非均匀性自适应射频脉冲(WE-SHARP)和传统的频谱绝热反转恢复(SPAIR)。
本前瞻性研究纳入了2023年10月至2024年8月符合条件的参与者。在3T条件下使用多种DWI技术,即SPAIR-DWI、WE-SHARP-DWI以及带有校正算法的WE-SHARP-DWI(WE-SHARP-DWI*),在b值为50、400、800和1200 s/mm²时采集图像,用于评估FLLs。两名放射科医生独立评估了几个主观图像质量参数:肝脏边缘清晰度、血管显示、病变清晰度、脂肪抑制效果、伪影和整体图像质量。还测量了信噪比(SNR)、对比噪声比(CNR)和表观扩散系数(ADC)值。使用受试者操作特征(ROC)曲线分析评估所有三种序列的诊断性能。
该研究纳入了158例患者(67例恶性病变和91例良性病变)和25名志愿者。与SPAIR-DWI相比,两种WE-SHARP序列的主观图像质量参数更优(P < 0.001)。WE-SHARP-DWI使SNR提高了2.15倍,WE-SHARP-DWI*使其提高了2.93倍。CNR也随着WE-SHARP序列显著改善(分别为30.75±36.83和42.43±53.23,而SPAIR-DWI为13.49±14.39)。此外,WE-SHARP序列在正常肝脏中显示出更低的ADC测量变异性,标准差更低(分别为32.80±19.13×10⁻³mm²/s和34.39±18.22×10⁻³mm²/s,而SPAIR-DWI为51.48±17.89×10⁻³mm²/s),并且良性和恶性病变之间的ADC差异更明显(分别为1179×10mm²/s和1197×10mm²/s,而SPAIR-DWI为1009×10mm²/s)。与SPAIR-DWI相比,WE-SHARP-DWI技术显示出更高的诊断性能,敏感性更高(0.95对0.88),ROC曲线下面积更大(0.98对0.95)。
两种WE-SHARP-DWI技术在评估FLLs方面均显示出优于传统SPAIR技术的图像质量和诊断价值。即使在高b值下,这些技术仍保持临床可接受的图像质量。