Suppr超能文献

基于计算机断层扫描的人工智能对胆管癌早期复发的诊断性能:系统评价与荟萃分析

Diagnostic Performance of Computed Tomography-Based Artificial Intelligence for Early Recurrence of Cholangiocarcinoma: Systematic Review and Meta-Analysis.

作者信息

Chen Jie, Xi Jianxin, Chen Tianyu, Yang Lulu, Liu Kaijia, Ding Xiaobo

机构信息

Department of Radiology, The First Hospital of Jilin University, Jilin, China.

General Surgery Center, Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China.

出版信息

J Med Internet Res. 2025 Sep 18;27:e78306. doi: 10.2196/78306.

Abstract

BACKGROUND

Despite artificial intelligence (AI) models demonstrating high predictive accuracy for early cholangiocarcinoma recurrence, their clinical application faces challenges, such as reproducibility, generalizability, hidden biases, and uncertain performance across diverse datasets and populations, raising concerns about their practical applicability.

OBJECTIVE

This meta-analysis aims to systematically assess the diagnostic performance of AI models using computed tomography (CT) imaging to predict early recurrence of cholangiocarcinoma.

METHODS

A systematic search was conducted in PubMed, Embase, and Web of Science for studies published up to May 2025. Studies were selected based on the Participants, Index test, Target condition, Reference standard, Outcomes, and Setting (PITROS) framework. Participants included patients diagnosed with cholangiocarcinoma (including intrahepatic and extrahepatic locations). The index test was AI techniques applied to CT imaging for early recurrence prediction (defined as within 1 year), while the target condition was early recurrence of cholangiocarcinoma (positive group: recurrence; negative group: no recurrence). The reference standard was pathological diagnosis or imaging follow-up confirming recurrence. Outcomes included sensitivity, specificity, diagnostic odds ratio (DOR), and area under the receiver operating characteristic curve (AUC), assessed in both internal and external validation cohorts. The setting comprised retrospective or prospective studies using hospital datasets. Methodological quality was assessed using an optimized version of the revised Quality Assessment of Diagnostic Accuracy Studies-2 tool. Heterogeneity was assessed using the I² statistic. Pooled sensitivity, specificity, DOR, and AUC were calculated using a bivariate random-effects model.

RESULTS

A total of 9 studies with 30 datasets involving 1537 patients were included. In internal validation cohorts, CT-based AI models showed a pooled sensitivity of 0.87 (95% CI 0.81-0.92), specificity of 0.85 (95% CI 0.79-0.89), DOR of 37.71 (95% CI 18.35-77.51), and AUC of 0.93 (95% CI 0.90-0.94). In external validation cohorts, pooled sensitivity was 0.87 (95% CI 0.81-0.91), specificity was 0.82 (95% CI 0.77-0.86), DOR was 30.81 (95% CI 18.79-50.52), and AUC was 0.85 (95% CI 0.82-0.88). The AUC was significantly lower in external validation cohorts compared to internal validation cohorts (P<.001).

CONCLUSIONS

Our results show that CT-based AI models predict early cholangiocarcinoma recurrence with high performance in internal validation sets and moderate performance in external validation sets. However, the high heterogeneity observed may impact the robustness of these results. Future research should focus on prospective studies and establishing standardized gold standards to further validate the clinical applicability and generalizability of AI models.

摘要

背景

尽管人工智能(AI)模型在早期胆管癌复发预测方面显示出较高的预测准确性,但其临床应用面临挑战,如可重复性、通用性、潜在偏差以及在不同数据集和人群中的性能不确定性,这引发了对其实际适用性的担忧。

目的

本荟萃分析旨在系统评估使用计算机断层扫描(CT)成像的AI模型预测胆管癌早期复发的诊断性能。

方法

在PubMed、Embase和Web of Science中进行系统检索,纳入截至2025年5月发表的研究。根据参与者、索引测试、目标疾病、参考标准、结局和研究背景(PITROS)框架选择研究。参与者包括被诊断为胆管癌的患者(包括肝内和肝外部位)。索引测试是应用于CT成像以预测早期复发(定义为1年内)的AI技术,而目标疾病是胆管癌的早期复发(阳性组:复发;阴性组:未复发)。参考标准是病理诊断或影像学随访证实复发。结局包括敏感性、特异性、诊断比值比(DOR)和受试者操作特征曲线下面积(AUC),在内部和外部验证队列中进行评估。研究背景包括使用医院数据集的回顾性或前瞻性研究。使用修订后的诊断准确性研究质量评估-2工具的优化版本评估方法学质量。使用I²统计量评估异质性。使用双变量随机效应模型计算合并敏感性、特异性、DOR和AUC。

结果

共纳入9项研究,30个数据集,涉及1537例患者。在内部验证队列中,基于CT的AI模型显示合并敏感性为0.87(95%CI 0.81 - 0.92),特异性为0.85(95%CI 0.79 - 0.89),DOR为37.71(95%CI 18.35 - 77.51),AUC为0.93(95%CI 0.90 - 0.94)。在外部验证队列中,合并敏感性为0.87(95%CI 0.81 - 0.91),特异性为0.82(95%CI 0.77 - 0.86),DOR为30.81(95%CI 18.79 - 50.52),AUC为0.85(95%CI 0.82 - 0.88)。与内部验证队列相比,外部验证队列中的AUC显著更低(P <.001)。

结论

我们的结果表明,基于CT的AI模型在内部验证集中对胆管癌早期复发具有较高的预测性能,在外部验证集中具有中等性能。然而,观察到的高异质性可能会影响这些结果的稳健性。未来的研究应侧重于前瞻性研究并建立标准化的金标准,以进一步验证AI模型的临床适用性和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dee/12491900/03735808cd6c/jmir_v27i1e78306_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验