Ou Yu, Xia Yingchun, Zhu Da, Li Changjian, Zhou Pan, Hou Wenhui, Lu Yang, Yan Shuaishuai, Song Xuan, Zhou Hangyu, Liu Zhi, Ma Xiao, Wu Yuhao, Peng Xuwen, Li Kezhuo, Wei Lai, Liu Hao, Xu Hong, Liu Kai
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
J Am Chem Soc. 2025 Sep 17;147(37):33976-33990. doi: 10.1021/jacs.5c11172. Epub 2025 Sep 4.
Molecular engineering of electrolytes for practical high-power and high-energy lithium metal batteries (LMBs) is a significant challenge due to the difficulty of simultaneously achieving high Li transport efficiency, minimal gas evolution, and stable cathode-electrolyte and anode-electrolyte interphases (CEI and SEI, respectively), with low charge-transfer resistance. Here, we introduce a fluorinated asymmetric lithium salt, lithium (2-(2-(2,2-difluoroethoxy)ethoxy)ethyl) ((trifluoromethyl)sulfonyl)amide (LiFOA), designed to optimize electrolyte physicochemical/electrochemical properties for stable LMB pouch cells under fast cycling conditions. LiFOA features a Li-affinitive side chain, which folds up and suppresses anion migration, resulting in a significantly heightened Li transference number (). Moreover, the folding enables a self-cleaning mechanism for both the SEI and CEI. Thus, robust and ultrathin CEI and SEI with low charge-transfer resistance are self-evolved simultaneously. Importantly, a semifluorinated methyl terminal of the side chain further optimizes molecular folding strength with a tuned donor number, which not only elevates the electrochemical stability of the functional salt but also significantly mitigates the gas-evolution issue of the electrolyte during harsh cycling of the battery. Through this molecular design, industrial pouch cells with LiFOA achieve an outstanding combination of practical demanding performances in terms of high energy density (523 W h kg at 0.1 C), high power density (1782 W kg at 5 C), excellent cycling stability, suppressed gas evolution, modest cell volume expansion, and a significantly lowered defect under rigorous operating conditions, highlighting LiFOA's potential for next-generation high-energy-density and high-power-density practical LMB applications.
对于实用的高功率和高能量锂金属电池(LMB)而言,电解质的分子工程是一项重大挑战,因为要同时实现高锂传输效率、最小的气体析出以及稳定的阴极-电解质和阳极-电解质界面(分别为CEI和SEI),且电荷转移电阻低,难度很大。在此,我们引入一种氟化不对称锂盐,即锂(2-(2-(2,2-二氟乙氧基)乙氧基)乙基)((三氟甲基)磺酰基)酰胺(LiFOA),其设计目的是优化电解质的物理化学/电化学性质,以使LMB软包电池在快速循环条件下保持稳定。LiFOA具有一个亲锂侧链,该侧链会折叠起来并抑制阴离子迁移,从而使锂迁移数()显著提高。此外,这种折叠为SEI和CEI都提供了一种自清洁机制。因此,同时自发形成了具有低电荷转移电阻的坚固且超薄的CEI和SEI。重要的是,侧链的半氟化甲基末端通过调整给体数进一步优化了分子折叠强度,这不仅提高了功能盐的电化学稳定性,还显著减轻了电池在严苛循环过程中电解质的气体析出问题。通过这种分子设计,采用LiFOA的工业软包电池在高能量密度(0.1 C时为523 W h kg)、高功率密度(5 C时为1782 W kg)、出色的循环稳定性、抑制气体析出、适度的电池体积膨胀以及在严格操作条件下显著降低的缺陷等实际苛刻性能方面实现了出色的组合突出了LiFOA在下一代高能量密度和高功率密度实用LMB应用中的潜力。