Suppr超能文献

一种时间因果和时间递归的、具有标度协变的时变信号和过去时间的尺度空间表示。

A time-causal and time-recursive scale-covariant scale-space representation of temporal signals and past time.

机构信息

Computational Brain Science Lab, Division of Computational Science and Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.

出版信息

Biol Cybern. 2023 Apr;117(1-2):21-59. doi: 10.1007/s00422-022-00953-6. Epub 2023 Jan 23.

Abstract

This article presents an overview of a theory for performing temporal smoothing on temporal signals in such a way that: (i) temporally smoothed signals at coarser temporal scales are guaranteed to constitute simplifications of corresponding temporally smoothed signals at any finer temporal scale (including the original signal) and (ii) the temporal smoothing process is both time-causal and time-recursive, in the sense that it does not require access to future information and can be performed with no other temporal memory buffer of the past than the resulting smoothed temporal scale-space representations themselves. For specific subsets of parameter settings for the classes of linear and shift-invariant temporal smoothing operators that obey this property, it is shown how temporal scale covariance can be additionally obtained, guaranteeing that if the temporal input signal is rescaled by a uniform temporal scaling factor, then also the resulting temporal scale-space representations of the rescaled temporal signal will constitute mere rescalings of the temporal scale-space representations of the original input signal, complemented by a shift along the temporal scale dimension. The resulting time-causal limit kernel that obeys this property constitutes a canonical temporal kernel for processing temporal signals in real-time scenarios when the regular Gaussian kernel cannot be used, because of its non-causal access to information from the future, and we cannot additionally require the temporal smoothing process to comprise a complementary memory of the past beyond the information contained in the temporal smoothing process itself, which in this way also serves as a multi-scale temporal memory of the past. We describe how the time-causal limit kernel relates to previously used temporal models, such as Koenderink's scale-time kernels and the ex-Gaussian kernel. We do also give an overview of how the time-causal limit kernel can be used for modelling the temporal processing in models for spatio-temporal and spectro-temporal receptive fields, and how it more generally has a high potential for modelling neural temporal response functions in a purely time-causal and time-recursive way, that can also handle phenomena at multiple temporal scales in a theoretically well-founded manner. We detail how this theory can be efficiently implemented for discrete data, in terms of a set of recursive filters coupled in cascade. Hence, the theory is generally applicable for both: (i) modelling continuous temporal phenomena over multiple temporal scales and (ii) digital processing of measured temporal signals in real time. We conclude by stating implications of the theory for modelling temporal phenomena in biological, perceptual, neural and memory processes by mathematical models, as well as implications regarding the philosophy of time and perceptual agents. Specifically, we propose that for A-type theories of time, as well as for perceptual agents, the notion of a non-infinitesimal inner temporal scale of the temporal receptive fields has to be included in representations of the present, where the inherent nonzero temporal delay of such time-causal receptive fields implies a need for incorporating predictions from the actual time-delayed present in the layers of a perceptual hierarchy, to make it possible for a representation of the perceptual present to constitute a representation of the environment with timing properties closer to the actual present.

摘要

本文概述了一种对时间信号进行时间平滑的理论,该理论具有以下特点:(i) 在更粗的时间尺度上进行的时间平滑信号保证是对应于任何更精细时间尺度(包括原始信号)的时间平滑信号的简化;(ii) 时间平滑过程是时间因果和时间递归的,也就是说,它不需要访问未来的信息,并且可以在没有过去的其他时间记忆缓冲区的情况下进行,而仅使用平滑后的时间尺度空间表示本身。对于满足该性质的线性和时移不变时间平滑算子类的特定参数子集,还可以获得时间尺度协方差,从而保证如果时间输入信号按均匀的时间缩放因子进行缩放,则缩放后的时间信号的时间尺度空间表示也将构成原始输入信号的时间尺度空间表示的简单缩放,并且沿时间尺度维度进行平移。满足该性质的因果时间限制核构成了实时处理时间信号的规范时间核,因为它对未来信息的非因果访问,而正则高斯核无法使用,并且我们不能再要求时间平滑过程包含过去的补充记忆,而不仅仅是时间平滑过程本身包含的信息,这也作为过去的多尺度时间记忆。我们描述了因果时间限制核如何与以前使用的时间模型相关,例如 Koenderink 的尺度-时间核和外高斯核。我们还概述了因果时间限制核如何用于时空和谱-时 receptive fields 模型中的时间处理建模,以及它如何更普遍地具有以纯粹的时间因果和时间递归方式对神经时间响应函数进行建模的高潜力,也可以以理论上合理的方式处理多个时间尺度上的现象。我们详细说明了如何以级联方式级联的一组递归滤波器的形式有效地实现该理论的离散数据。因此,该理论通常适用于以下两种情况:(i) 在多个时间尺度上对连续时间现象进行建模;(ii) 实时对测量的时间信号进行数字处理。最后,我们陈述了该理论对通过数学模型对生物、感知、神经和记忆过程中的时间现象进行建模的影响,以及对时间哲学和感知主体的影响。具体而言,我们提出,对于 A 型时间理论以及感知主体,时间接收场的内在非无穷小时间尺度的概念必须包含在当前的表示中,其中这种因果时间接收场的固有非零时间延迟意味着需要从感知层次结构的实际时间延迟的当前层中包含来自实际时间延迟的当前的预测,以使感知当前的表示能够构成具有更接近实际当前的定时属性的环境的表示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验