Ashok A, Sekar Karthick, Acosta D, Alzahrani Hind Saeed, Alfaifi Amani H, Hameed Talaat A
Sección de Electrónica de Estado Sólido (SEES), Departamento de Ingeniería Eléctrica Cinvestav, San Pedro Zacatenco C.P. 07360 Mexico City Mexico
Aix-Marseille Université, CNRS, IM2NP, Faculté de Saint Jérôme 13397 Marseille Cedex 20 France.
RSC Adv. 2025 Sep 5;15(38):31899-31916. doi: 10.1039/d5ra03970c. eCollection 2025 Aug 29.
Aluminum-doped copper indium gallium selenide/sulfide (CIGAS) is a favorable absorber material for solar cell applications; however, the number of reports on CIGAS solar cells currently remains limited. In this study, we therefore employed SCAPS-1D software for the theoretical modeling of CIGAS thin film solar cells and investigated the effect of material properties and device configurations on solar cell photovoltaic (PV) parameters. Initially, key parameters such as thickness and charge carrier concentrations of each layer used in CIGAS PV devices were studied and optimized to obtain suitable conditions for high device performance. The impact of the various buffer window layers (BWL)-such as CdS, InS, ZnS, ZnSe, InSe, VO, ZnO, and MgZnO-as well as the back surface field (BSF) layers, including SbSe, AlSb, CuGaSe, SnS, BaSi, MoS, MoSe, p-Si, CuS, and WSe, was systematically tested to determine a CIGAS solar cell configuration with greater efficiency. After meticulous optimization, CdS and SbSe materials were selected as the best BWL and BSF layers for the CIGAS device configuration, respectively, demonstrating a maximum power conversion efficiency (PCE) of 32.2% compared to other chosen materials. Finally, an experimentally obtained CIGAS absorber and CdS buffer material properties were introduced into optimized conditions with and without a BSF layer to further analyze their influence on solar cell performance. This also confirmed that the BSF layer significantly boosts device efficiency compared to the conventional CIGAS device.
铝掺杂铜铟镓硒化物/硫化物(CIGAS)是一种适用于太阳能电池应用的吸收材料;然而,目前关于CIGAS太阳能电池的报道数量仍然有限。因此,在本研究中,我们使用SCAPS - 1D软件对CIGAS薄膜太阳能电池进行理论建模,并研究了材料特性和器件结构对太阳能电池光伏(PV)参数的影响。首先,研究并优化了CIGAS光伏器件中各层的关键参数,如厚度和电荷载流子浓度,以获得器件高性能的合适条件。系统地测试了各种缓冲窗口层(BWL),如硫化镉(CdS)、硫化铟(InS)、硫化锌(ZnS)、硒化锌(ZnSe)、硒化铟(InSe)、氧化钒(VO)、氧化锌(ZnO)和镁锌氧化物(MgZnO),以及背表面场(BSF)层,包括硒化锑(SbSe)、锑化铝(AlSb)、铜镓硒(CuGaSe)、硫化锡(SnS)、硅化钡(BaSi)、硫化钼(MoS)、硒化钼(MoSe)、p型硅(p - Si)、硫化铜(CuS)和硒化钨(WSe),以确定具有更高效率的CIGAS太阳能电池结构。经过精心优化,分别选择CdS和SbSe材料作为CIGAS器件结构的最佳BWL和BSF层,与其他所选材料相比,其最大功率转换效率(PCE)达到32.2%。最后,将实验获得的CIGAS吸收层和CdS缓冲层材料特性引入有和没有BSF层的优化条件中,以进一步分析它们对太阳能电池性能的影响。这也证实了与传统CIGAS器件相比,BSF层显著提高了器件效率。