Suppr超能文献

一种基于图注意力机制的深度学习网络,用于预测生物技术小分子药物相互作用。

A graph attention-based deep learning network for predicting biotech-small-molecule drug interactions.

作者信息

Nasiri Fatemeh, Hooshmand Mohsen

机构信息

Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.

出版信息

Bioinform Adv. 2025 Sep 1;5(1):vbaf192. doi: 10.1093/bioadv/vbaf192. eCollection 2025.

Abstract

MOTIVATION

The increasing demand for effective drug combinations has made drug-drug interaction prediction a critical task in modern pharmacology. While most existing research focuses on small-molecule drugs, the role of biotech drugs in complex disease treatments remains relatively unexplored. Biotech drugs, derived from biological sources, have unique molecular structures that differ significantly from those of small molecules, making their interactions more challenging to predict.

RESULTS

This study introduces a novel graph attention networkbased deep learning framework that improves interaction prediction between biotech and small-molecule drugs. Experimental results demonstrate that the proposed method outperforms existing methods in multiclass drug-drug interaction prediction, achieving superior performance across various evaluation types, including micro, macro, and weighted assessments. These findings highlight the potential of deep learning and graph-based models in uncovering novel interactions between biotech and small-molecule drugs, paving the way for more effective combination therapies in drug discovery.

AVAILABILITY AND IMPLEMENTATION

The datasets and source code of this study are available in the GitHub repository: https://github.com/BioinformaticsIASBS/BSI-Net.

摘要

动机

对有效药物组合的需求不断增加,使得药物相互作用预测成为现代药理学中的一项关键任务。虽然大多数现有研究集中在小分子药物上,但生物科技药物在复杂疾病治疗中的作用仍相对未被探索。生物科技药物源自生物来源,具有独特的分子结构,与小分子药物的结构有显著差异,这使得它们之间的相互作用更具预测挑战性。

结果

本研究引入了一种基于图注意力网络的新型深度学习框架,该框架改进了生物科技药物与小分子药物之间的相互作用预测。实验结果表明,所提出的方法在多类药物相互作用预测中优于现有方法,在包括微观、宏观和加权评估在内的各种评估类型中均取得了优异的性能。这些发现突出了深度学习和基于图的模型在揭示生物科技药物与小分子药物之间新相互作用方面的潜力,为药物发现中更有效的联合疗法铺平了道路。

可用性和实现

本研究的数据集和源代码可在GitHub存储库中获取:https://github.com/BioinformaticsIASBS/BSI-Net。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5740/12408249/d6ad2806b85c/vbaf192f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验