文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用功能连接组学的神经精神疾病分类——神经影像学转移学习挑战中连接组学的结果

Neuropsychiatric disease classification using functional connectomics - results of the connectomics in neuroimaging transfer learning challenge.

作者信息

Schirmer Markus D, Venkataraman Archana, Rekik Islem, Kim Minjeong, Mostofsky Stewart H, Nebel Mary Beth, Rosch Keri, Seymour Karen, Crocetti Deana, Irzan Hassna, Hütel Michael, Ourselin Sebastien, Marlow Neil, Melbourne Andrew, Levchenko Egor, Zhou Shuo, Kunda Mwiza, Lu Haiping, Dvornek Nicha C, Zhuang Juntang, Pinto Gideon, Samal Sandip, Zhang Jennings, Bernal-Rusiel Jorge L, Pienaar Rudolph, Chung Ai Wern

机构信息

Massachusetts General Hospital, Harvard Medical School, Boston, USA; German Center for Neurodegenerative Diseases, Bonn, Germany; Clinic for Neuroradiology, University Hospital Bonn, Germany; Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, USA.

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA; Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, USA.

出版信息

Med Image Anal. 2021 May;70:101972. doi: 10.1016/j.media.2021.101972. Epub 2021 Jan 28.


DOI:10.1016/j.media.2021.101972
PMID:33677261
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9115580/
Abstract

Large, open-source datasets, such as the Human Connectome Project and the Autism Brain Imaging Data Exchange, have spurred the development of new and increasingly powerful machine learning approaches for brain connectomics. However, one key question remains: are we capturing biologically relevant and generalizable information about the brain, or are we simply overfitting to the data? To answer this, we organized a scientific challenge, the Connectomics in NeuroImaging Transfer Learning Challenge (CNI-TLC), held in conjunction with MICCAI 2019. CNI-TLC included two classification tasks: (1) diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD) within a pre-adolescent cohort; and (2) transference of the ADHD model to a related cohort of Autism Spectrum Disorder (ASD) patients with an ADHD comorbidity. In total, 240 resting-state fMRI (rsfMRI) time series averaged according to three standard parcellation atlases, along with clinical diagnosis, were released for training and validation (120 neurotypical controls and 120 ADHD). We also provided Challenge participants with demographic information of age, sex, IQ, and handedness. The second set of 100 subjects (50 neurotypical controls, 25 ADHD, and 25 ASD with ADHD comorbidity) was used for testing. Classification methodologies were submitted in a standardized format as containerized Docker images through ChRIS, an open-source image analysis platform. Utilizing an inclusive approach, we ranked the methods based on 16 metrics: accuracy, area under the curve, F1-score, false discovery rate, false negative rate, false omission rate, false positive rate, geometric mean, informedness, markedness, Matthew's correlation coefficient, negative predictive value, optimized precision, precision, sensitivity, and specificity. The final rank was calculated using the rank product for each participant across all measures. Furthermore, we assessed the calibration curves of each methodology. Five participants submitted their method for evaluation, with one outperforming all other methods in both ADHD and ASD classification. However, further improvements are still needed to reach the clinical translation of functional connectomics. We have kept the CNI-TLC open as a publicly available resource for developing and validating new classification methodologies in the field of connectomics.

摘要

大型开源数据集,如人类连接组计划和自闭症脑成像数据交换计划,推动了用于脑连接组学的新型且日益强大的机器学习方法的发展。然而,一个关键问题仍然存在:我们是在获取有关大脑的生物学相关且可推广的信息,还是仅仅在过度拟合数据?为了回答这个问题,我们组织了一项科学挑战赛,即神经影像转移学习挑战赛中的连接组学挑战赛(CNI-TLC),该挑战赛与2019年医学图像计算与计算机辅助干预国际会议(MICCAI)联合举办。CNI-TLC包括两项分类任务:(1)对青春期前队列中的注意力缺陷多动障碍(ADHD)进行诊断;(2)将ADHD模型转移到患有ADHD合并症的自闭症谱系障碍(ASD)患者的相关队列中。总共发布了根据三个标准脑区图谱平均的240个静息态功能磁共振成像(rsfMRI)时间序列以及临床诊断结果,用于训练和验证(120名神经典型对照者和120名ADHD患者)。我们还向挑战赛参与者提供了年龄、性别、智商和利手的人口统计学信息。第二组100名受试者(50名神经典型对照者、25名ADHD患者和25名患有ADHD合并症的ASD患者)用于测试。分类方法以标准化格式作为容器化的Docker镜像通过开源图像分析平台ChRIS提交。我们采用一种包容性方法,根据16个指标对这些方法进行排名:准确率、曲线下面积、F1分数、错误发现率、假阴性率、错误遗漏率、假阳性率、几何平均数、信息性、标记性、马修斯相关系数、阴性预测值、优化精度、精度、敏感性和特异性。最终排名是使用每个参与者在所有指标上的排名乘积来计算的。此外,我们评估了每种方法的校准曲线。五名参与者提交了他们的方法进行评估,其中一名在ADHD和ASD分类中均优于所有其他方法。然而,要实现功能连接组学的临床转化仍需要进一步改进。我们将CNI-TLC作为一个公开可用资源保持开放,用于开发和验证连接组学领域的新分类方法。

相似文献

[1]
Neuropsychiatric disease classification using functional connectomics - results of the connectomics in neuroimaging transfer learning challenge.

Med Image Anal. 2021-5

[2]
The Functional Brain Organization of an Individual Allows Prediction of Measures of Social Abilities Transdiagnostically in Autism and Attention-Deficit/Hyperactivity Disorder.

Biol Psychiatry. 2019-3-7

[3]
Developmental functional brain network abnormalities in autism spectrum disorder comorbid with attention deficit hyperactivity disorder.

Eur J Pediatr. 2025-1-31

[4]
Altered Periodic Dynamics in the Default Mode Network in Autism and Attention-Deficit/Hyperactivity Disorder.

Biol Psychiatry. 2022-6-1

[5]
Structure-Function Connectomics Reveals Aberrant Developmental Trajectory Occurring at Preadolescence in the Autistic Brain.

Cereb Cortex. 2020-7-30

[6]
Data-driven identification of subtypes of executive function across typical development, attention deficit hyperactivity disorder, and autism spectrum disorders.

J Child Psychol Psychiatry. 2020-1

[7]
White Matter Connectome Edge Density in Children with Autism Spectrum Disorders: Potential Imaging Biomarkers Using Machine-Learning Models.

Brain Connect. 2019-3

[8]
Functional Connectivity of Frontoparietal and Salience/Ventral Attention Networks Have Independent Associations With Co-occurring Attention-Deficit/Hyperactivity Disorder Symptoms in Children With Autism.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2019-1-9

[9]
Enhancing studies of the connectome in autism using the autism brain imaging data exchange II.

Sci Data. 2017-3-14

[10]
Alterations in Connectome Dynamics in Autism Spectrum Disorder: A Harmonized Mega- and Meta-analysis Study Using the Autism Brain Imaging Data Exchange Dataset.

Biol Psychiatry. 2022-6-1

引用本文的文献

[1]
Multilayer meta-matching: Translating phenotypic prediction models from multiple datasets to small data.

Imaging Neurosci (Camb). 2024-7-17

[2]
mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery from Functional Connectomics Manifolds.

Inf Process Med Imaging. 2023-6

[3]
Delineating Transdiagnostic Subtypes in Neurodevelopmental Disorders via Contrastive Graph Machine Learning of Brain Connectivity Patterns.

bioRxiv. 2024-3-4

[4]
Multilayer meta-matching: translating phenotypic prediction models from multiple datasets to small data.

bioRxiv. 2023-12-7

[5]
Accounting for temporal variability in functional magnetic resonance imaging improves prediction of intelligence.

Hum Brain Mapp. 2023-9

[6]
Beyond massive univariate tests: Covariance regression reveals complex patterns of functional connectivity related to attention-deficit/hyperactivity disorder, age, sex, and response control.

Biol Psychiatry Glob Open Sci. 2022-1

[7]
Radiomics, machine learning, and artificial intelligence-what the neuroradiologist needs to know.

Neuroradiology. 2021-12

本文引用的文献

[1]
Improving Multi-Site Autism Classification via Site-Dependence Minimization and Second-Order Functional Connectivity.

IEEE Trans Med Imaging. 2023-1

[2]
Optimising network modelling methods for fMRI.

Neuroimage. 2020-5-1

[3]
A joint network optimization framework to predict clinical severity from resting state functional MRI data.

Neuroimage. 2019-10-31

[4]
The road ahead in clinical network neuroscience.

Netw Neurosci. 2019-9-1

[5]
Rich-Club Organization: An Important Determinant of Functional Outcome After Acute Ischemic Stroke.

Front Neurol. 2019-9-10

[6]
Brain Connectivity Measures Improve Modeling of Functional Outcome After Acute Ischemic Stroke.

Stroke. 2019-9-12

[7]
Exploring the impact of analysis software on task fMRI results.

Hum Brain Mapp. 2019-5-2

[8]
The Functional Brain Organization of an Individual Allows Prediction of Measures of Social Abilities Transdiagnostically in Autism and Attention-Deficit/Hyperactivity Disorder.

Biol Psychiatry. 2019-3-7

[9]
Learning Generalizable Recurrent Neural Networks from Small Task-fMRI Datasets.

Med Image Comput Comput Assist Interv. 2018-9

[10]
Why rankings of biomedical image analysis competitions should be interpreted with care.

Nat Commun. 2018-12-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索