Schirmer Markus D, Venkataraman Archana, Rekik Islem, Kim Minjeong, Mostofsky Stewart H, Nebel Mary Beth, Rosch Keri, Seymour Karen, Crocetti Deana, Irzan Hassna, Hütel Michael, Ourselin Sebastien, Marlow Neil, Melbourne Andrew, Levchenko Egor, Zhou Shuo, Kunda Mwiza, Lu Haiping, Dvornek Nicha C, Zhuang Juntang, Pinto Gideon, Samal Sandip, Zhang Jennings, Bernal-Rusiel Jorge L, Pienaar Rudolph, Chung Ai Wern
Massachusetts General Hospital, Harvard Medical School, Boston, USA; German Center for Neurodegenerative Diseases, Bonn, Germany; Clinic for Neuroradiology, University Hospital Bonn, Germany; Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, USA.
Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA; Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, USA.
Med Image Anal. 2021 May;70:101972. doi: 10.1016/j.media.2021.101972. Epub 2021 Jan 28.
Large, open-source datasets, such as the Human Connectome Project and the Autism Brain Imaging Data Exchange, have spurred the development of new and increasingly powerful machine learning approaches for brain connectomics. However, one key question remains: are we capturing biologically relevant and generalizable information about the brain, or are we simply overfitting to the data? To answer this, we organized a scientific challenge, the Connectomics in NeuroImaging Transfer Learning Challenge (CNI-TLC), held in conjunction with MICCAI 2019. CNI-TLC included two classification tasks: (1) diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD) within a pre-adolescent cohort; and (2) transference of the ADHD model to a related cohort of Autism Spectrum Disorder (ASD) patients with an ADHD comorbidity. In total, 240 resting-state fMRI (rsfMRI) time series averaged according to three standard parcellation atlases, along with clinical diagnosis, were released for training and validation (120 neurotypical controls and 120 ADHD). We also provided Challenge participants with demographic information of age, sex, IQ, and handedness. The second set of 100 subjects (50 neurotypical controls, 25 ADHD, and 25 ASD with ADHD comorbidity) was used for testing. Classification methodologies were submitted in a standardized format as containerized Docker images through ChRIS, an open-source image analysis platform. Utilizing an inclusive approach, we ranked the methods based on 16 metrics: accuracy, area under the curve, F1-score, false discovery rate, false negative rate, false omission rate, false positive rate, geometric mean, informedness, markedness, Matthew's correlation coefficient, negative predictive value, optimized precision, precision, sensitivity, and specificity. The final rank was calculated using the rank product for each participant across all measures. Furthermore, we assessed the calibration curves of each methodology. Five participants submitted their method for evaluation, with one outperforming all other methods in both ADHD and ASD classification. However, further improvements are still needed to reach the clinical translation of functional connectomics. We have kept the CNI-TLC open as a publicly available resource for developing and validating new classification methodologies in the field of connectomics.
大型开源数据集,如人类连接组计划和自闭症脑成像数据交换计划,推动了用于脑连接组学的新型且日益强大的机器学习方法的发展。然而,一个关键问题仍然存在:我们是在获取有关大脑的生物学相关且可推广的信息,还是仅仅在过度拟合数据?为了回答这个问题,我们组织了一项科学挑战赛,即神经影像转移学习挑战赛中的连接组学挑战赛(CNI-TLC),该挑战赛与2019年医学图像计算与计算机辅助干预国际会议(MICCAI)联合举办。CNI-TLC包括两项分类任务:(1)对青春期前队列中的注意力缺陷多动障碍(ADHD)进行诊断;(2)将ADHD模型转移到患有ADHD合并症的自闭症谱系障碍(ASD)患者的相关队列中。总共发布了根据三个标准脑区图谱平均的240个静息态功能磁共振成像(rsfMRI)时间序列以及临床诊断结果,用于训练和验证(120名神经典型对照者和120名ADHD患者)。我们还向挑战赛参与者提供了年龄、性别、智商和利手的人口统计学信息。第二组100名受试者(50名神经典型对照者、25名ADHD患者和25名患有ADHD合并症的ASD患者)用于测试。分类方法以标准化格式作为容器化的Docker镜像通过开源图像分析平台ChRIS提交。我们采用一种包容性方法,根据16个指标对这些方法进行排名:准确率、曲线下面积、F1分数、错误发现率、假阴性率、错误遗漏率、假阳性率、几何平均数、信息性、标记性、马修斯相关系数、阴性预测值、优化精度、精度、敏感性和特异性。最终排名是使用每个参与者在所有指标上的排名乘积来计算的。此外,我们评估了每种方法的校准曲线。五名参与者提交了他们的方法进行评估,其中一名在ADHD和ASD分类中均优于所有其他方法。然而,要实现功能连接组学的临床转化仍需要进一步改进。我们将CNI-TLC作为一个公开可用资源保持开放,用于开发和验证连接组学领域的新分类方法。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2019-1-9
Imaging Neurosci (Camb). 2024-7-17
Inf Process Med Imaging. 2023-6
IEEE Trans Med Imaging. 2023-1
Neuroimage. 2020-5-1
Netw Neurosci. 2019-9-1
Hum Brain Mapp. 2019-5-2
Med Image Comput Comput Assist Interv. 2018-9