Pettersson Annelie, Axenhus Michael, Stukan Teo, Ljungberg Oscar, Nåsell Hans, Razavian Ali Sharif, Gordon Max
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
BMC Musculoskelet Disord. 2025 Sep 9;26(1):848. doi: 10.1186/s12891-025-09161-2.
This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons. A pretrained Efficientnet B4 network with squeeze and excitation layers was fine-tuned. Performance was assessed against a test set of 208 radiographs reviewed independently by four orthopedic surgeons, with disagreements resolved via consensus.
The study evaluated 54 distinct fracture types, each with a minimum of 10 cases, ensuring adequate dataset representation. Overall fracture detection achieved an AUC of 0.88 (95% CI 0.83-0.93). The weighted mean AUC was 0.80 for proximal radius fractures, 0.86 for proximal ulna, and 0.85 for distal humerus. These results underscore the AI system's ability to accurately detect and classify a broad spectrum of elbow fractures.
AI systems, such as CNNs, can enhance clinicians' ability to identify and classify elbow fractures, offering a complementary tool to improve diagnostic accuracy and optimize treatment decisions. The findings suggest AI can reduce the risk of undiagnosed fractures, enhancing clinical outcomes and radiologic evaluation.
本研究使用详细的2018年AO/OTA骨折分类系统,评估人工智能(AI)系统,特别是卷积神经网络(CNN)在肘部骨折分类中的准确性。
使用深度神经网络对2002年至2016年成年患者的5367份肘部X光检查进行回顾性分析。骨科医生根据2018年AO/OTA系统对X光片进行手动分类。对带有挤压和激励层的预训练Efficientnet B4网络进行微调。通过由四名骨科医生独立审查的208张X光片测试集评估性能,分歧通过共识解决。
该研究评估了54种不同的骨折类型,每种类型至少有10例病例,以确保数据集有足够的代表性。总体骨折检测的AUC为0.88(95%CI 0.83 - 0.93)。桡骨近端骨折的加权平均AUC为0.80,尺骨近端为0.86,肱骨远端为0.85。这些结果强调了AI系统准确检测和分类广泛肘部骨折的能力。
诸如CNN之类的AI系统可以提高临床医生识别和分类肘部骨折的能力,提供一种补充工具以提高诊断准确性并优化治疗决策。研究结果表明AI可以降低漏诊骨折的风险,改善临床结果和放射学评估。