Suppr超能文献

极端离群基因表达模式表明转录组网络中存在混沌边缘效应。

Patterns of extreme outlier gene expression suggest an edge of chaos effect in transcriptomic networks.

作者信息

Xie Chen, Künzel Sven, Zhang Wenyu, Hathaway Cassandra A, Tworoger Shelley S, Tautz Diethard

机构信息

Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, Plön, Germany.

Biomedical Pioneering Innovation Center, Peking University, Beijing, 100871, China.

出版信息

Genome Biol. 2025 Sep 9;26(1):272. doi: 10.1186/s13059-025-03709-0.

Abstract

BACKGROUND

Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

RESULTS

Our study is based on multiple datasets, including data from outbred and inbred mice, GTEx data from humans, data from different Drosophila species, and single-nuclei sequencing data from human brain tissues. All show comparable general patterns of outlier gene expression, indicating this as a generalizable biological effect. Different individuals can harbor very different numbers of outlier genes, with some individuals showing extreme numbers in only one out of several organs. Outlier gene expression occurs as part of co-regulatory modules, some of which correspond to known pathways. In a three-generation family analysis in mice, we find that most extreme over-expression is not inherited, but appears to be sporadically generated. Genes encoding prolactin and growth hormone are also among the co-regulated genes with extreme outlier expression, both in mice and humans, for which we include also a longitudinal expression analysis for protein data.

CONCLUSIONS

We show that outlier patterns of gene expression are a biological reality occurring universally across tissues and species. Most of the outlier expression is spontaneous and not inherited. We suggest that the outlier patterns reflect edge of chaos effects that are expected for systems of non-linear interactions and feedback loops, such as gene regulatory networks.

摘要

背景

大多数RNA测序数据集在某些样本中存在基因表达水平极高的情况。此类极端异常值通常被视为技术误差,并在进一步统计分析之前从数据中剔除。在此,我们聚焦于此类异常基因表达的模式,以探究它们是否能为潜在生物学机制提供见解。

结果

我们的研究基于多个数据集,包括远交和近交小鼠的数据、来自人类的GTEx数据、不同果蝇物种的数据以及人类脑组织的单核测序数据。所有数据集均呈现出可比的异常基因表达总体模式,表明这是一种可推广的生物学效应。不同个体可能含有数量差异极大的异常基因,有些个体仅在几个器官中的一个器官表现出极端数量。异常基因表达作为共调控模块的一部分出现,其中一些与已知途径相对应。在小鼠的三代家系分析中,我们发现大多数极端过表达并非遗传而来,而是似乎偶尔产生。编码催乳素和生长激素的基因也是具有极端异常表达的共调控基因之一,在小鼠和人类中均如此,对此我们还纳入了蛋白质数据的纵向表达分析。

结论

我们表明,基因表达的异常模式是一种普遍存在于各组织和物种中的生物学现象。大多数异常表达是自发的,而非遗传的。我们认为,异常模式反映了非线性相互作用和反馈回路系统(如基因调控网络)所预期的混沌边缘效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验