Ruth Parker S, Uhlrich Scott D, de Monts Constance, Falisse Antoine, Muccini Julie, Covitz Sydney, Vogt-Domke Shelby, Day John, Duong Tina, Delp Scott L
Department of Computer Science, Stanford University, Stanford, CA.
Department of Mechanical Engineering, University of Utah, Salt Lake City.
NEJM AI. 2025 Sep;2(9). doi: 10.1056/aioa2401137. Epub 2025 Aug 28.
Assessing human movement is essential for diagnosing and monitoring movement-related conditions like neuromuscular disorders. Timed function tests (TFTs) are among the most widespread types of assessments due to their speed and simplicity, but they cannot capture disease-specific movement patterns. Conversely, biomechanical analysis can produce sensitive disease-specific biomarkers, but it is traditionally confined to laboratory settings. Recent advances in smartphone video-based biomechanical analysis enable the quantification of three-dimensional movement with the ease and speed required for clinical settings. However, the potential of this technology to offer more sensitive assessments of human function than TFTs remains untested.
To compare video-based analysis with TFTs, we collected an observational dataset from 129 individuals: 28 with facioscapulohumeral muscular dystrophy, 58 with myotonic dystrophy, and 43 controls with no diagnosed neuromuscular condition. We used OpenCap, a free open-source software tool, to capture smartphone video-based biomechanics of nine different movements in a median time of 16 minutes per participant. From these recordings, we extracted 34 interpretable movement features. Using these features, we evaluated the ability of video-based biomechanics to reproduce four TFTs (10-meter walk, 10-meter run, timed up-and-go, and 5-times sit-to-stand) while capturing additional disease-specific signatures of movement.
Video-based biomechanical analysis reproduced all four TFTs (r>0.98) with similar test-retest reliability. In addition, video metrics outperformed TFTs at disease classification (P=0.021). Unlike TFTs, video-based biomechanical analysis identified disease-specific signatures of movement, such as differences in gait kinematics, that are not evident in TFTs.
Video-based biomechanical analysis can complement existing functional movement assessments by capturing more sensitive, disease-specific outcomes from human movement. This technology enables digital health solutions for assessing and monitoring motor function, complementing traditional clinical outcome measures to enhance care, management, and clinical trial design for movement-related conditions. (Funded by the Wu Tsai Human Performance Alliance and others.).
评估人体运动对于诊断和监测与运动相关的疾病(如神经肌肉疾病)至关重要。定时功能测试(TFTs)因其速度快和操作简单,是最广泛使用的评估类型之一,但它们无法捕捉特定疾病的运动模式。相反,生物力学分析可以产生敏感的特定疾病生物标志物,但传统上它仅限于实验室环境。基于智能手机视频的生物力学分析的最新进展使得能够以临床环境所需的简便性和速度对三维运动进行量化。然而,这项技术提供比TFTs更敏感的人体功能评估的潜力尚未得到检验。
为了将基于视频的分析与TFTs进行比较,我们收集了129名个体的观察数据集:28名患有面肩肱型肌营养不良症,58名患有强直性肌营养不良症,43名对照者未被诊断出患有神经肌肉疾病。我们使用免费的开源软件工具OpenCap,以每位参与者平均16分钟的时间捕捉基于智能手机视频的九种不同运动的生物力学数据。从这些记录中,我们提取了34个可解释的运动特征。利用这些特征,我们评估了基于视频的生物力学在重现四项TFTs(10米步行、10米跑步、定时起立行走和5次坐立试验)的能力,同时捕捉额外的特定疾病运动特征。
基于视频的生物力学分析重现了所有四项TFTs(r>0.98),具有相似的重测信度。此外,在疾病分类方面,视频指标优于TFTs(P=0.021)。与TFTs不同,基于视频的生物力学分析识别出了特定疾病的运动特征,如步态运动学的差异,而这些在TFTs中并不明显。
基于视频的生物力学分析可以通过捕捉人体运动中更敏感、特定疾病的结果来补充现有的功能运动评估。这项技术为评估和监测运动功能提供了数字健康解决方案,补充了传统的临床结局测量方法,以加强对与运动相关疾病的护理、管理和临床试验设计。(由吴蔡人类表现联盟等资助。)