Suppr超能文献

应用于求解生物布尔网络的同步和异步更新方案的分析方法。

Analytical approach of synchronous and asynchronous update schemes applied to solving biological Boolean networks.

作者信息

Bensussen Antonio, Arciniega-González J Arturo, Álvarez-Buylla Elena R, Martínez-García Juan Carlos

机构信息

Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, Mexico.

Programa Doctoral en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.

出版信息

PLoS One. 2025 Sep 12;20(9):e0319240. doi: 10.1371/journal.pone.0319240. eCollection 2025.

Abstract

Characterizing the minimum, necessary and sufficient components to generate the dynamics of a biological system has always been a priority to understand its functioning. In this sense, the canonical form of biological systems modeled by Boolean networks accurately defines the components in charge of controlling the dynamics of such systems. However, the calculation of the canonical form might be complicated in mathematical terms. In addition, computing the canonical form does not consider the dynamical properties found when using the synchronous and asynchronous update schemes to solve Boolean networks. Here, we analyze both update schemes and their connection with the canonical form of Boolean networks. We found that the synchronous scheme can be expressed by the Chapman-Kolmogorov equation, being a particular case of Markov chains. We also discovered that the canonical form of any Boolean network can be easily obtained by solving this matrix equation. Finally, we found that, the update order of the asynchronous scheme generates a set of functions that, when composed together, produce characteristic properties of this scheme, such as the conservation of fixed-point attractors or the variability in the basins of attraction. We concluded that the canonical form of Boolean networks can only be obtained for systems that use the synchronous update scheme, which opens up new possibilities for study.

摘要

确定产生生物系统动态变化的最小、必要且充分的组成部分,一直是理解其功能的首要任务。从这个意义上讲,由布尔网络建模的生物系统的规范形式准确地定义了负责控制系统动态变化的组成部分。然而,从数学角度来看,规范形式的计算可能会很复杂。此外,计算规范形式时并未考虑在使用同步和异步更新方案求解布尔网络时发现的动态特性。在此,我们分析了这两种更新方案及其与布尔网络规范形式的联系。我们发现同步方案可以用查普曼 - 柯尔莫哥洛夫方程来表示,它是马尔可夫链的一种特殊情况。我们还发现,通过求解这个矩阵方程可以轻松得到任何布尔网络的规范形式。最后,我们发现,异步方案的更新顺序会生成一组函数,将这些函数组合在一起时,会产生该方案的特征属性,例如定点吸引子的守恒或吸引域的变异性。我们得出结论,布尔网络的规范形式仅适用于使用同步更新方案的系统,这为研究开辟了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7463/12431216/985256af3b3e/pone.0319240.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验