Suppr超能文献

癫痫手术切除掩码的自动生成:RAMPS流程

Automated generation of epilepsy surgery resection masks: The RAMPS pipeline.

作者信息

Simpson Callum, Hall Gerard, Duncan John S, Wang Yujiang, Taylor Peter N

机构信息

CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom.

UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom.

出版信息

Imaging Neurosci (Camb). 2025 Sep 10;3. doi: 10.1162/IMAG.a.147. eCollection 2025.

Abstract

MRI-based delineation of brain tissue removed by epilepsy surgery can be challenging due to post-operative brain shift. In consequence, most studies use manual approaches which are prohibitively time-consuming for large sample sizes, require expertise, and can be prone to errors. We propose RAMPS (Resections And Masks in Preoperative Space), an automated pipeline to generate a 3D resection mask of pre-operative tissue. Our pipeline leverages existing software including FreeSurfer, SynthStrip, Sythnseg and ANTs to generate a mask in the same space as the patient's pre-operative T1 weighted MRI. We compare our automated masks against manually drawn masks and two other existing pipelines (Epic-CHOP and ResectVol). Comparing to manual masks (N = 87), RAMPS achieved a median (IQR) dice similarity of 0.86 (0.078) in temporal lobe resections, and 0.72 (0.32) in extratemporal resections. In comparison to other pipelines, RAMPS had higher dice similarities (N = 62) (RAMPS: 0.86, Epic-CHOP: 0.72, ResectVol: 0.72). We release a user-friendly, easy-to-use pipeline, RAMPS, open source for accurate delineation of resected tissue.

摘要

由于术后脑移位,基于磁共振成像(MRI)描绘癫痫手术切除的脑组织具有挑战性。因此,大多数研究采用手动方法,对于大样本量来说,这种方法耗时过长,需要专业知识,并且容易出错。我们提出了RAMPS(术前空间中的切除术和掩码),这是一种用于生成术前组织三维切除掩码的自动化流程。我们的流程利用包括FreeSurfer、SynthStrip、Sythnseg和ANTs在内的现有软件,在与患者术前T1加权MRI相同的空间中生成掩码。我们将自动生成的掩码与手动绘制的掩码以及其他两个现有流程(Epic-CHOP和ResectVol)进行比较。与手动掩码(N = 87)相比,RAMPS在颞叶切除术中的中位(四分位距)骰子相似性为0.86(0.078),在颞叶外切除术中为0.72(0.32)。与其他流程相比,RAMPS具有更高的骰子相似性(N = 62)(RAMPS:0.86,Epic-CHOP:0.72,ResectVol:0.72)。我们发布了一个用户友好、易于使用的流程RAMPS,它是开源的,用于准确描绘切除的组织。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99e7/12423638/36fc29c2b9c0/IMAG.a.147_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验