Chattopadhyay Tamoghna, Mehendale Gautam, Thomopoulos Sophia I, Joshi Himanshu, Venkatasubramanian Ganesan, John John P, Ambite Jose Luis, Ver Steeg Greg, Thompson Paul M
Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States.
Multimodal Brain Image Analysis Laboratory.
bioRxiv. 2025 Sep 1:2025.08.27.672677. doi: 10.1101/2025.08.27.672677.
Diffusion tensor imaging (DTI) provides valuable insights into brain tissue microstructure, but acquiring high-quality DTI data is time-intensive and not always feasible. To mitigate data scarcity and enhance accessibility, we investigate the generation of synthetic DTI scalar maps-specifically mean diffusivity (MD)-from structural 3D volumetric T1-weighted brain MRI using a reversible generative adversarial network (RevGAN). Unlike conventional pipelines requiring multiple steps, our approach enables a single-step translation from T1 to diffusion-derived measures. We assess the quality and utility of the synthetic maps in two downstream tasks: sex classification and Alzheimer's disease classification. Performance comparisons between models trained on real and synthetic DTI maps demonstrate that RevGAN-generated images retain meaningful microstructural features and offer competitive accuracy, underscoring their potential for data augmentation and analysis in neuroimaging workflows. We also examine how well models trained on these data generalize to a new population dataset from India (NIMHANS cohort).
扩散张量成像(DTI)为脑组织微观结构提供了有价值的见解,但获取高质量的DTI数据耗时且并非总是可行。为了缓解数据稀缺并提高可及性,我们研究了使用可逆生成对抗网络(RevGAN)从结构性3D容积T1加权脑MRI生成合成DTI标量图,特别是平均扩散率(MD)。与需要多个步骤的传统流程不同,我们的方法能够从T1到扩散衍生测量进行单步转换。我们在两个下游任务中评估合成图的质量和效用:性别分类和阿尔茨海默病分类。在真实和合成DTI图上训练的模型之间的性能比较表明,RevGAN生成的图像保留了有意义的微观结构特征并提供了有竞争力的准确性,突出了它们在神经成像工作流程中进行数据增强和分析的潜力。我们还研究了在这些数据上训练的模型对来自印度的新人群数据集(NIMHANS队列)的泛化程度。