Suppr超能文献

评估乳腺钼靶和超声特征以鉴别乳腺良性和恶性结构扭曲。

Assessment of mammographic and ultrasonic signatures for differentiating benign and malignant breast structural distortions.

作者信息

Zhang Lijing, Yang Kai, Chen Cong, Wu Xi, Yang Guang

机构信息

Department of Medical Imaging, Shijiazhuang Maternal and Child Health Hospital (Shijiazhuang Children's Hospital) Shijiangzhuang 050000, Hebei, China.

Department of Radiology, Fourth Hospital of Hebei Medical University Shijiangzhuang 050011, Hebei, China.

出版信息

Am J Transl Res. 2025 Aug 15;17(8):6214-6224. doi: 10.62347/KETB2223. eCollection 2025.

Abstract

OBJECTIVE

To evaluate the diagnostic performance of mammography and ultrasonography in distinguishing benign from malignant breast structural distortions and to develop an integrated predictive model combining radiomic features and molecular markers for improved risk stratification.

METHODS

This retrospective study included 260 patients with histopathologically confirmed breast structural distortions (156 malignant, 104 benign). Lesions were characterized using Breast Imaging Reporting and Data System (BI-RADS) criteria. Radiomic features were extracted with PyRadiomics, harmonized via ComBat, and selected using Least Absolute Shrinkage and Selection Operator (LASSO) regression. A predictive model incorporated imaging features, molecular markers (vascular endothelial growth factor [VEGF], transforming growth factor-β1 [TGF-β1]), and clinical variables. Diagnostic accuracy was assessed by sensitivity, specificity, AUC, and decision curve analysis, with subgroup analyses by age, menopausal status, and breast density.

RESULTS

Malignant distortions showed higher rates of spiculated margins (82.1% vs. 16.3%, P<0.001) and hypoechoic irregular masses (78.2% vs. 27.9%, P<0.001). Combined mammography-ultrasound assessment improved diagnostic performance (AUC 0.91) versus single modalities (mammography 0.79; ultrasound 0.82). The radiomic-molecular model further enhanced accuracy (AUC 0.94) and reduced unnecessary biopsies by 32%. Spiculation complexity and VEGF overexpression were independent predictors of lymphovascular invasion and lower 5-year disease-free survival (68% vs. 89%, P=0.01).

CONCLUSION

Integrating mammography, ultrasonography, and radiomic-pathologic markers significantly improves differentiation of malignant breast distortions and supports personalized prognosis.

摘要

目的

评估乳腺钼靶和超声在鉴别乳腺结构扭曲的良恶性方面的诊断性能,并开发一种结合放射组学特征和分子标志物的综合预测模型,以改善风险分层。

方法

这项回顾性研究纳入了260例经组织病理学证实存在乳腺结构扭曲的患者(156例为恶性,104例为良性)。采用乳腺影像报告和数据系统(BI-RADS)标准对病变进行特征描述。使用PyRadiomics提取放射组学特征,通过ComBat进行标准化,并使用最小绝对收缩和选择算子(LASSO)回归进行选择。一个预测模型纳入了影像特征、分子标志物(血管内皮生长因子[VEGF]、转化生长因子-β1[TGF-β1])和临床变量。通过敏感性、特异性、AUC和决策曲线分析评估诊断准确性,并按年龄、绝经状态和乳腺密度进行亚组分析。

结果

恶性扭曲显示出更高的毛刺状边缘发生率(82.1%对16.3%,P<0.001)和低回声不规则肿块发生率(78.2%对27.9%,P<0.001)。与单一检查方式(乳腺钼靶AUC 0.79;超声AUC 0.82)相比,乳腺钼靶-超声联合评估提高了诊断性能(AUC 0.91)。放射组学-分子模型进一步提高了准确性(AUC 0.94),并将不必要的活检减少了32%。毛刺复杂性和VEGF过表达是淋巴管侵犯和较低的5年无病生存率的独立预测因素(68%对89%,P = 0.01)。

结论

整合乳腺钼靶、超声和放射组学-病理标志物可显著改善乳腺恶性扭曲的鉴别诊断,并支持个性化预后评估。

相似文献

本文引用的文献

8
A Review of Artificial Intelligence in Breast Imaging.人工智能在乳腺成像中的应用综述。
Tomography. 2024 May 9;10(5):705-726. doi: 10.3390/tomography10050055.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验