Suppr超能文献

基于深度学习和影像组学特征融合的下咽鳞状细胞癌放化疗敏感性分类

Classification of chemoradiotherapy sensitivity in hypopharyngeal squamous cell carcinoma based on deep-learning and radiomics feature fusion.

作者信息

Tao Hengmin, Yang Xinbo, Chen Meihui, Li Baosheng

机构信息

Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.

Department of Radiation Oncology, Tianjin Medical University, Tianjin, China.

出版信息

Transl Cancer Res. 2025 Aug 31;14(8):5142-5154. doi: 10.21037/tcr-2025-1628. Epub 2025 Aug 28.

Abstract

BACKGROUND

Analyzing apparent diffusion coefficient (ADC) images before chemoradiotherapy (CRT) can effectively predict the treatment response of patients with hypopharyngeal squamous cell carcinoma (HPSCC), thereby reducing the treatment risks. This study aimed to develop a predictive model by combining deep-learning features and radiomics features derived from ADC images to predict the CRT sensitivity of HPSCC patients, providing effective guidance for treatment strategy selection.

METHODS

This study retrospectively analyzed the data of 120 HPSCC patients. Deep-learning features were extracted from ADC images using a vision transformer (ViT)-based deep-learning model, while radiomics features were extracted using the PyRadiomics feature extractor. Among the 1,288 extracted radiomics features, the most significant ones were selected using the Spearman's correlation coefficient, intraclass correlation coefficient (ICC), and least absolute shrinkage and selection operator (LASSO) method. These features were fused through a concatenation approach, and a classification prediction was performed using a convolutional neural network with three fully connected layers.

RESULTS

The accuracy, sensitivity, specificity, and area under the curve (AUC) values of the feature fusion model were 0.99 . 0.875, 0.988 . 0.842, 1.000 . 1.000, and 1.000 . 0.947, for the training and validation datasets, respectively. The feature fusion model performed optimally in comparison to the other models. In the validation dataset, the accuracy of the feature fusion model improved by 16.7% and 4.2% compared to the clinical and radiomic models, respectively.

CONCLUSIONS

The model developed in this study, which integrates deep-learning features with traditional radiomics features, can accurately predict the CRT sensitivity of HPSCC patients using pre-treatment ADC images. This model provides an effective reference for selecting optimal treatment strategies for patients.

摘要

背景

在放化疗(CRT)前分析表观扩散系数(ADC)图像可有效预测下咽鳞状细胞癌(HPSCC)患者的治疗反应,从而降低治疗风险。本研究旨在通过结合源自ADC图像的深度学习特征和放射组学特征来开发一种预测模型,以预测HPSCC患者的CRT敏感性,为治疗策略选择提供有效指导。

方法

本研究回顾性分析了120例HPSCC患者的数据。使用基于视觉Transformer(ViT)的深度学习模型从ADC图像中提取深度学习特征,同时使用PyRadiomics特征提取器提取放射组学特征。在提取的1288个放射组学特征中,使用斯皮尔曼相关系数、组内相关系数(ICC)和最小绝对收缩和选择算子(LASSO)方法选择最显著的特征。这些特征通过串联方法进行融合,并使用具有三个全连接层的卷积神经网络进行分类预测。

结果

特征融合模型在训练和验证数据集上的准确率、敏感性、特异性和曲线下面积(AUC)值分别为0.99、0.875、0.988、0.842、1.000、1.000和1.000、0.947。与其他模型相比,特征融合模型表现最佳。在验证数据集中,特征融合模型的准确率分别比临床模型和放射组学模型提高了16.7%和4.2%。

结论

本研究开发的模型将深度学习特征与传统放射组学特征相结合,能够使用治疗前的ADC图像准确预测HPSCC患者的CRT敏感性。该模型为为患者选择最佳治疗策略提供了有效的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eda/12432764/aa13f7cbffaa/tcr-14-08-5142-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验