Ouda Emtinan, Yousf Nehad, Elzwawy Amir, Magar Hend S, Hassan Rabeay Y A, El-Ashry Magdy, Duraia El-Shazly M
Physics Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt.
Laboratories Manager, Faculty of Medicine, Suez Canal University Ismailia 41522 Egypt.
RSC Adv. 2025 Sep 15;15(40):33667-33681. doi: 10.1039/d5ra04502a. eCollection 2025 Sep 11.
Hydrogen peroxide (HO) is a ubiquitous molecule in biological systems, but at elevated concentrations, it exhibits cytotoxicity, necessitating precise monitoring for both biomedical and analytical applications. In this work, we report a cost-effective strategy for synthesizing carbon nanotube/lithium ferrite (CNTs/LFO) nanocomposites with different LFO doping levels (0.5%, 1%, and 2%) for non-enzymatic HO sensing. The nanocomposites were fabricated a citrate-gel auto-combustion route, yielding uniformly dispersed structures. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) confirmed the presence of a crystalline ferrite phase with nanoplate particles averaging ∼50 nm. Vibrating sample magnetometry (VSM) revealed a maximum saturation magnetization of 25 emu g for the 2% LFO composition. Electrochemical characterization using cyclic voltammetry (CV) demonstrated superior HO sensing activity of CNTs/LFO compared to pure LFO, attributed to accelerated electron transfer at the CNTs-modified interface. The optimized electrode exhibited excellent stability, a low detection limit of 0.005 μM, and a wide linear response range of 0.1-500 μM. These results highlight CNTs/LFO nanocomposites as highly promising candidates for advanced HO sensing and related electrochemical applications.
过氧化氢(HO)是生物系统中普遍存在的分子,但在浓度升高时,它会表现出细胞毒性,因此在生物医学和分析应用中都需要进行精确监测。在这项工作中,我们报告了一种经济高效的策略,用于合成具有不同LFO掺杂水平(0.5%、1%和2%)的碳纳米管/锂铁氧体(CNTs/LFO)纳米复合材料,用于非酶促HO传感。通过柠檬酸盐凝胶自燃烧路线制备了纳米复合材料,得到了均匀分散的结构。X射线衍射(XRD)和场发射扫描电子显微镜(FE-SEM)证实了存在平均粒径约为50nm的纳米片状颗粒的结晶铁氧体相。振动样品磁强计(VSM)显示,2%LFO组成的最大饱和磁化强度为25emu g。使用循环伏安法(CV)进行的电化学表征表明,与纯LFO相比,CNTs/LFO具有优异的HO传感活性,这归因于CNTs修饰界面处加速的电子转移。优化后的电极表现出优异的稳定性、0.005μM的低检测限和0.1-500μM的宽线性响应范围。这些结果突出了CNTs/LFO纳米复合材料作为先进HO传感及相关电化学应用极具潜力的候选材料。