Gao Minjuan, Song Chenye, Zhang Qiaorong, Zhang Xuande, Li Yankang, Yuan Fujiang
School of Computer Science and Technology, Taiyuan Normal University, Jinzhong 030619, China.
School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, China.
J Imaging. 2025 Sep 8;11(9):307. doi: 10.3390/jimaging11090307.
Image quality assessment (IQA) aims to measure the consistency between an objective algorithm output and a subjective perception measurement. This article focuses on this complex relationship in the context of color image scenarios-color image quality assessment (CIQA). This review systematically investigates CIQA applications in image compression, processing optimization, and domain-specific scenarios, analyzes benchmark datasets and assessment metrics, and categorizes CIQA algorithms into full-reference (FR), reduced-reference (RR) and no-reference (NR) methods. In this study, color images are evaluated using a newly developed CIQA framework. Focusing on FR and NR methods, FR methods leverage reference images with machine learning, visual perception models, and mathematical frameworks, while NR methods utilize distortion-only features through feature fusion and extraction techniques. Specialized CIQA algorithms are developed for robotics, low-light, and underwater imaging. Despite progress, challenges remain in cross-domain adaptability, generalization, and contextualized assessment. Future directions may include prototype-based cross-domain adaptation, fidelity-structure balancing, spatiotemporal consistency integration, and CIQA-restoration synergy to meet emerging demands.
图像质量评估(IQA)旨在衡量客观算法输出与主观感知测量之间的一致性。本文聚焦于彩色图像场景下的这种复杂关系——彩色图像质量评估(CIQA)。本综述系统地研究了CIQA在图像压缩、处理优化和特定领域场景中的应用,分析了基准数据集和评估指标,并将CIQA算法分为全参考(FR)、半参考(RR)和无参考(NR)方法。在本研究中,使用新开发的CIQA框架对彩色图像进行评估。聚焦于FR和NR方法,FR方法利用参考图像结合机器学习、视觉感知模型和数学框架,而NR方法通过特征融合和提取技术利用仅含失真的特征。针对机器人技术、低光照和水下成像开发了专门的CIQA算法。尽管取得了进展,但在跨域适应性、泛化能力和情境化评估方面仍存在挑战。未来的方向可能包括基于原型的跨域适应、保真度-结构平衡、时空一致性整合以及CIQA-恢复协同作用,以满足新出现的需求。