Atay Ahmet İlter, Gültekin Bahattin Alper, Yalçın Serdar
Oral Implantology Program, Institute of Graduate Studies in Health Sciences, Istanbul University, 34098 Istanbul, Turkey.
Faculty of Dentistry, Department of Oral Implantology, Istanbul University, 34098 Istanbul, Turkey.
J Funct Biomater. 2025 Sep 8;16(9):333. doi: 10.3390/jfb16090333.
Finite element analysis is commonly used to evaluate implant biomechanics, yet limited data exist on arch form and trabecular-surfaced implants. This study aimed to investigate the biomechanical impact of a designed trabecular surface compared with a standard implant surface in full-arch, four-implant-supported restorations, using two mandibular arch forms and four placement configurations. Finite element analyses were conducted under a 250-N oblique load applied at 30° to the posterior segment. The prosthesis was modeled as a titanium-acrylic hybrid structure. Stress distribution was evaluated in cortical and cancellous bones, implants, and prosthetic frameworks. Implants with a trabecular surface demonstrated lower stress concentrations in both bone and implant structures. The von Mises stress at the neck of the posterior implant decreased from 383.3 MPa (standard implant, hyperbolic arch, configuration 1) to 194.9 MPa (trabecular-surfaced implant, U-shaped arch, configuration 4). Similarly, the average maximum principal tensile stress in cortical bone reduced from 44.32 to 40.99 MPa with the trabecular design. Among placement strategies, Configuration 3 (all implants tilted distally) yielded the highest bone stress, whereas Configurations 2 and 4 provided more favorable load distribution. Stress concentrations were also higher in hyperbolic arches, whereas U-shaped arches exhibited a more uniform distribution. These findings emphasized the biomechanical advantage of the designed trabecular surface in reducing stress across bone and implant components, indicating that trabecular titanium may represent a more reliable and cost-effective alternative for clinical applications, potentially enhancing long-term stability. Independently, the arch form and placement strategy also significantly influenced load distribution. Despite assumptions such as isotropic, homogeneous, and linearly elastic material properties, and the use of a single oblique loading condition, this study offers valuable biomechanical insights such as the stress-reducing effect of the trabecular surface, the influence of three-dimensional arch anatomy on stress concentration sites, and the necessity of selecting implant configurations according to arch forms, which may inform future full-arch implant rehabilitations.
有限元分析常用于评估种植体生物力学,但关于牙弓形态和小梁表面种植体的数据有限。本研究旨在调查在全牙弓、四颗种植体支持的修复体中,与标准种植体表面相比,设计的小梁表面在两种下颌牙弓形态和四种植入配置下的生物力学影响。在向后段施加30°的250 N斜向载荷下进行有限元分析。假体被建模为钛-丙烯酸混合结构。评估皮质骨和松质骨、种植体和修复框架中的应力分布。具有小梁表面的种植体在骨和种植体结构中均表现出较低的应力集中。后牙种植体颈部的von Mises应力从383.3 MPa(标准种植体,双曲线牙弓,配置1)降至194.9 MPa(小梁表面种植体,U形牙弓,配置4)。同样,小梁设计使皮质骨中的平均最大主拉应力从44.32 MPa降至40.99 MPa。在植入策略中,配置3(所有种植体向远中倾斜)产生的骨应力最高,而配置2和4提供了更有利的载荷分布。双曲线牙弓中的应力集中也更高,而U形牙弓表现出更均匀的分布。这些发现强调了设计的小梁表面在降低骨和种植体部件应力方面的生物力学优势,表明小梁钛可能是临床应用中更可靠且具成本效益的替代方案,可能增强长期稳定性。独立来看,牙弓形态和植入策略也显著影响载荷分布。尽管有诸如各向同性、均匀和线弹性材料特性等假设,以及使用单一斜向加载条件,但本研究提供了有价值的生物力学见解,如小梁表面的应力降低效果、三维牙弓解剖结构对应力集中部位的影响,以及根据牙弓形态选择种植体配置的必要性,这可能为未来的全牙弓种植修复提供参考。