Tennyson Joshua M, Sohn Michael O, Movva Arun K, Mitra Kishen, O'Neill Conor N, Anastasio Albert T, Adams Samuel B
Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA.
Bioengineering (Basel). 2025 Sep 5;12(9):955. doi: 10.3390/bioengineering12090955.
Surface engineering and architectural design represent key frontiers in total ankle arthroplasty (TAA) implant development. This narrative review examines biointegration strategies, focusing on porous structures, surface modification techniques, and emerging smart technologies. Optimal porous architectures with 300-600 µm pore sizes facilitate bone ingrowth and osseointegration, while functionally graded structures address regional biomechanical demands. Surface modification encompasses bioactive treatments (such as calcium phosphate coatings), topographical modifications (including micro/nanotexturing), antimicrobial approaches (utilizing metallic ions or antibiotic incorporation), and wear-resistant technologies (such as diamond-like carbon coatings). Multifunctional approaches combine strategies to simultaneously address infection prevention, enhance osseointegration, and improve wear resistance. Emerging technologies include biodegradable scaffolds, biomimetic surface nanotechnology, and intelligent sensor-based monitoring systems. While many innovations remain in the research stage, they demonstrate the potential to establish TAA as a comprehensive alternative to arthrodesis. Successful implant design requires integrated surface engineering tailored to the ankle joint's demanding biomechanical and biological environment.
表面工程和结构设计是全踝关节置换术(TAA)植入物开发的关键前沿领域。本叙述性综述探讨了生物整合策略,重点关注多孔结构、表面改性技术和新兴的智能技术。孔径为300 - 600 µm的最佳多孔结构有利于骨长入和骨整合,而功能梯度结构则可满足局部生物力学需求。表面改性包括生物活性处理(如磷酸钙涂层)、形貌改性(包括微/纳米纹理化)、抗菌方法(利用金属离子或掺入抗生素)以及耐磨技术(如类金刚石碳涂层)。多功能方法结合多种策略,同时解决感染预防、增强骨整合和提高耐磨性等问题。新兴技术包括可生物降解支架、仿生表面纳米技术和基于智能传感器的监测系统。虽然许多创新仍处于研究阶段,但它们展示了将TAA确立为关节融合术全面替代方案的潜力。成功的植入物设计需要针对踝关节苛刻的生物力学和生物学环境进行综合表面工程设计。