Suppr超能文献

细菌的感觉电生理学:枯草芽孢杆菌中膜电位与运动性及趋化性的关系。

Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis.

作者信息

Miller J B, Koshland D E

出版信息

Proc Natl Acad Sci U S A. 1977 Nov;74(11):4752-6. doi: 10.1073/pnas.74.11.4752.

Abstract

The relationship of membrane potential to motility and chemotaxis of Bacillus subtilis has been tested by using the fluorescence of a cyanine dye as a probe of the potential. The dye fluorescence was found to be an indicator of membrane potential by correlation with triphenylmethylphosphonium ion distribution and with changes due to anaerobicity and ionophore addition. When the potential was sufficient for motility and constant over time, it was found that the absolute level of the potential did not affect the swimming behavior of the bacteria. Transient alteration of the membrane potential did, however, lead to changes in swimming behavior. Attractants were found to alter the swimming behavior of the bacteria without altering the membrane potential. Thus, change of the overall membrane potential of a normal B. subtilis is not required for chemotaxis, but such a change is sensed by the bacteria just as changing levels of attractants and repellents are sensed.

摘要

通过使用花青染料的荧光作为电位探针,测试了枯草芽孢杆菌的膜电位与运动性和趋化性之间的关系。通过与三苯甲基鏻离子分布以及厌氧和添加离子载体引起的变化相关联,发现染料荧光是膜电位的指标。当电位足以支持运动且随时间保持恒定时,发现电位的绝对水平并不影响细菌的游动行为。然而,膜电位的瞬时改变确实会导致游动行为的变化。发现引诱剂会改变细菌的游动行为,而不会改变膜电位。因此,正常枯草芽孢杆菌的整体膜电位变化对于趋化性不是必需的,但细菌能感知这种变化,就如同能感知引诱剂和驱避剂水平的变化一样。

相似文献

3
Protonmotive force and bacterial sensing.
J Bacteriol. 1980 Jan;141(1):26-32. doi: 10.1128/jb.141.1.26-32.1980.
4
Effects of lipophilic cations on motility and other physiological properties of Bacillus subtilis.
J Bacteriol. 1981 Sep;147(3):1054-62. doi: 10.1128/jb.147.3.1054-1062.1981.
5
Action of uncouplers of oxidative phosphorylation as chemotactic repellents of Bacillus subtilis.
J Gen Microbiol. 1980 Jun;118(2):471-8. doi: 10.1099/00221287-118-2-471.
6
Voltage clamp effects on bacterial chemotaxis.
J Bacteriol. 1984 Aug;159(2):605-10. doi: 10.1128/jb.159.2.605-610.1984.
7
Protonmotive force and motility of Bacillus subtilis.
J Bacteriol. 1978 Mar;133(3):1083-8. doi: 10.1128/jb.133.3.1083-1088.1978.
9
Alteration of membrane permeability in Bacillus subtilis by clofoctol.
J Gen Microbiol. 1983 Apr;129(4):1089-95. doi: 10.1099/00221287-129-4-1089.
10

引用本文的文献

1
Toward measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime.
Biophys Rep (N Y). 2025 Mar 12;5(1):100196. doi: 10.1016/j.bpr.2025.100196. Epub 2025 Jan 10.
2
Bioenergetic suppression by redox-active metabolites promotes antibiotic tolerance in .
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2406555121. doi: 10.1073/pnas.2406555121. Epub 2024 Nov 6.
3
The microbiome-derived antibacterial lugdunin acts as a cation ionophore in synergy with host peptides.
mBio. 2024 Sep 11;15(9):e0057824. doi: 10.1128/mbio.00578-24. Epub 2024 Aug 12.
4
Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime.
bioRxiv. 2024 Dec 21:2024.06.13.598880. doi: 10.1101/2024.06.13.598880.
5
From the Microbiome to the Electrome: Implications for the Microbiota-Gut-Brain Axis.
Int J Mol Sci. 2024 Jun 5;25(11):6233. doi: 10.3390/ijms25116233.
7
Mitochondrial ATP Synthase and Mild Uncoupling by Butyl Ester of Rhodamine 19, C4R1.
Antioxidants (Basel). 2023 Mar 4;12(3):646. doi: 10.3390/antiox12030646.
8
Determination of Bacterial Membrane Impairment by Antimicrobial Agents.
Methods Mol Biol. 2023;2601:271-281. doi: 10.1007/978-1-0716-2855-3_14.
9
Comparative Studies to Uncover Mechanisms of Action of -(1,3,4-Oxadiazol-2-yl)benzamide Containing Antibacterial Agents.
ACS Infect Dis. 2022 Apr 8;8(4):865-877. doi: 10.1021/acsinfecdis.1c00613. Epub 2022 Mar 17.
10
Bacterial Homologs of Progestin and AdipoQ Receptors (PAQRs) Affect Membrane Energetics Homeostasis but Not Fluidity.
J Bacteriol. 2022 Apr 19;204(4):e0058321. doi: 10.1128/jb.00583-21. Epub 2022 Mar 14.

本文引用的文献

1
Uncoordination and recoordination in Spirillum volutans.
Can J Microbiol. 1972 Nov;18(11):1749-59. doi: 10.1139/m72-271.
2
Bioelectric control of ciliary activity.
Science. 1972 May 5;176(4034):473-81. doi: 10.1126/science.176.4034.473.
3
Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis.
J Bacteriol. 1971 Jun;106(3):848-55. doi: 10.1128/jb.106.3.848-855.1971.
6
Bacterial motility and chemotaxis: light-induced tumbling response and visualization of individual flagella.
J Mol Biol. 1974 Apr 15;84(3):399-406. doi: 10.1016/0022-2836(74)90448-3.
7
Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria.
Proc Natl Acad Sci U S A. 1974 Apr;71(4):1239-43. doi: 10.1073/pnas.71.4.1239.
8
Role of methionine in bacterial chemotaxis.
J Bacteriol. 1974 May;118(2):640-5. doi: 10.1128/jb.118.2.640-645.1974.
9
Common mechanism for repellents and attractants in bacterial chemotaxis.
Science. 1973 Jul 6;181(4094):60-3. doi: 10.1126/science.181.4094.60.
10
Chemotaxis in Escherichia coli analysed by three-dimensional tracking.
Nature. 1972 Oct 27;239(5374):500-4. doi: 10.1038/239500a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验