Suppr超能文献

金黄色葡萄球菌H的一种新型多效性噬菌体抗性突变体的特性

Properties of a novel pleiotropic bacteriophage-resistant mutant of Staphylococcus aureus H.

作者信息

Chatterjee A N, Mirelman D, Singer H J, Park J T

出版信息

J Bacteriol. 1969 Nov;100(2):846-53. doi: 10.1128/jb.100.2.846-853.1969.

Abstract

A phage-resistant mutant of Staphylococcus aureus H (Sm(R)), S. aureus 52A5, was previously shown to lack polymeric teichoic acid. This paper characterizes other phenotypic differences between the strains. In broth cultures the mutant cells grew more slowly, were larger, and formed much larger clumps than the parent strain. The clumps of cells appeared to be covalently linked and could only be separated by mild sonic energy-a process which yielded viable cells. Mutant and parent cells autolyzed at equal rates, whereas isolated cell walls of the mutant strain autolyzed faster than the wild type. Nevertheless, the specific activity of the autolytic enzyme in the wild type soluble fraction was much higher than in the mutant. In contrast to the parent, strain 52A5 failed to accumulate nucleotide-bound murein precursors when treated with penicillin. Mutant strains with these characteristics were repeatedly isolated both spontaneously and by chemical mutagenesis. Strain 52A5 was shown to be fully revertible. Thus, it appears to be a pleiotropic mutation, and the possible nature of the defect which causes these varied effects is discussed.

摘要

金黄色葡萄球菌H(Sm(R))的噬菌体抗性突变体——金黄色葡萄球菌52A5,先前已被证明缺乏聚合磷壁酸。本文描述了这些菌株之间的其他表型差异。在肉汤培养中,突变体细胞生长更缓慢,体积更大,并且比亲本菌株形成的菌团大得多。细胞菌团似乎是共价连接的,只能通过温和的声能分离——这一过程产生活细胞。突变体和亲本细胞以相同的速率自溶,而突变菌株的分离细胞壁比野生型自溶得更快。然而,野生型可溶性部分中自溶酶的比活性远高于突变体。与亲本不同,52A5菌株在用青霉素处理时未能积累核苷酸结合的胞壁质前体。具有这些特征的突变菌株通过自发和化学诱变反复分离得到。菌株52A5被证明是完全可回复的。因此,这似乎是一个多效性突变,并讨论了导致这些不同效应的缺陷的可能性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d2/250167/b5c9a056facf/jbacter00385-0328-a.jpg

相似文献

1
Properties of a novel pleiotropic bacteriophage-resistant mutant of Staphylococcus aureus H.
J Bacteriol. 1969 Nov;100(2):846-53. doi: 10.1128/jb.100.2.846-853.1969.
3
Isolation and characterization of a mutant of Staphylococcus aureus deficient in autolytic activity.
J Bacteriol. 1976 Mar;125(3):961-7. doi: 10.1128/jb.125.3.961-967.1976.
4
Autolysis of microbial cells: salt activation of autolytic enzymes in a mutant of Staphylococcus aureus.
J Bacteriol. 1972 Jul;111(1):272-83. doi: 10.1128/jb.111.1.272-283.1972.
6
Cell wall composition and associated properties of methicillin-resistant Staphylococcus aureus strains.
J Bacteriol. 1978 Dec;136(3):976-82. doi: 10.1128/jb.136.3.976-982.1978.
8
CELL-WALL LYSINS OF STAPHYLOCOCCUS AUREUS STRAINS INDUCED BY SPECIFIC TYPING PHAGES.
J Bacteriol. 1964 Sep;88(3):667-75. doi: 10.1128/jb.88.3.667-675.1964.
9
Relative rates of lysis of staphylococcal cell walls by lytic enzymes from various bacteriophage types.
J Bacteriol. 1969 Jun;98(3):920-3. doi: 10.1128/jb.98.3.920-923.1969.
10
Chemical characterization of a new surface antigenic polysaccharide from a mutant of Staphylococcus aureus.
J Bacteriol. 1971 Nov;108(2):874-84. doi: 10.1128/jb.108.2.874-884.1971.

引用本文的文献

1
The host phylogeny determines viral infectivity and replication across Staphylococcus host species.
PLoS Pathog. 2023 Jun 8;19(6):e1011433. doi: 10.1371/journal.ppat.1011433. eCollection 2023 Jun.
2
Determinants of Phage Host Range in Species.
Appl Environ Microbiol. 2019 May 16;85(11). doi: 10.1128/AEM.00209-19. Print 2019 Jun 1.
3
Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12510-5. doi: 10.1073/pnas.1404099111. Epub 2014 Aug 7.
4
How Listeria monocytogenes organizes its surface for virulence.
Front Cell Infect Microbiol. 2014 Apr 29;4:48. doi: 10.3389/fcimb.2014.00048. eCollection 2014.
5
Colonisation of a phage susceptible Campylobacter jejuni population in two phage positive broiler flocks.
PLoS One. 2014 Apr 14;9(4):e94782. doi: 10.1371/journal.pone.0094782. eCollection 2014.
6
Wall teichoic acids of gram-positive bacteria.
Annu Rev Microbiol. 2013;67:313-36. doi: 10.1146/annurev-micro-092412-155620.
7
Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM.
J Biol Chem. 2010 Apr 30;285(18):13405-15. doi: 10.1074/jbc.M109.096172. Epub 2010 Feb 25.
10
Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin.
Microbiol Mol Biol Rev. 1998 Dec;62(4):1371-414. doi: 10.1128/MMBR.62.4.1371-1414.1998.

本文引用的文献

3
THE USE OF SEPHADEX G-25 FOR THE ISOLATION OF NUCLEOTIDE SUGAR DERIVATIVES FROM MICROCOCCUS LYSODEIKTICUS.
Biochim Biophys Acta. 1964 Nov 1;83:378-80. doi: 10.1016/0926-6526(64)90025-4.
4
ANALYSIS OF A GENE CONTROLLING CELL DIVISION AND SENSITIVITY TO RADIATION IN ESCHERICHIA COLI.
J Bacteriol. 1964 Mar;87(3):720-6. doi: 10.1128/jb.87.3.720-726.1964.
5
BIOSYNTHESIS OF CELL WALL MUCOPEPTIDE BY A PARTICULATE FRACTION FROM STAPHYLOCOCCUS AUREUS.
Proc Natl Acad Sci U S A. 1964 Jan;51(1):9-16. doi: 10.1073/pnas.51.1.9.
7
Autolytic release and osmotic properties of protoplasts from Staphylococcus aureus.
J Gen Microbiol. 1957 Feb;16(1):184-94. doi: 10.1099/00221287-16-1-184.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验