Suppr超能文献

关于大肠杆菌K12中λ噬菌体抗性的一些遗传学方面

On some genetic aspects of phage lambda resistance in E. coli K12.

作者信息

Thirion J P, Hofnung M

出版信息

Genetics. 1972 Jun;71(2):207-16. doi: 10.1093/genetics/71.2.207.

Abstract

Most mutations rendering E. coli K12 resistant to phage lambda, map in two genetic regions malA and malB.-The malB region contains a gene lamB specifically involved in the lambda receptor synthesis. Twenty-one independent lamB mutations studied by complementation belonged to a single cistron. This makes it very likely that lamB is monocistronic. Among the lamB mutants some are still sensitive to a host range mutant of phage lambda. Mutations mapping in a proximal gene essential for maltose metabolism inactivate gene lamB by polarity confirming that both genes are part of the same operon. Because cases of intracistronic complementation have been found, the active lamB product may be an oligomeric protein.-Previously all lambda resistant mutations in the malA region have been shown to map in the malT cistron. malT is believed to be a positive regulatory gene necessary for the induction of the "maltose operons" in the malA region and in the malB region of the E. coli K12 genetic map. No trans dominant malT mutation have been found. Therefore if they exist, they occur at a frequency of less than 10(-8), or strongly reduce the growth rate of the mutants.

摘要

大多数使大肠杆菌K12对噬菌体λ产生抗性的突变定位于两个遗传区域,即malA和malB。malB区域包含一个特定参与λ受体合成的基因lamB。通过互补研究的21个独立的lamB突变属于单个顺反子。这使得lamB很可能是单顺反子。在lamB突变体中,有些对噬菌体λ的宿主范围突变体仍敏感。定位于对麦芽糖代谢至关重要的近端基因中的突变通过极性使lamB基因失活,证实这两个基因是同一操纵子的一部分。由于发现了顺反子内互补的情况,活性lamB产物可能是一种寡聚蛋白。以前已表明,malA区域中的所有λ抗性突变都定位于malT顺反子。malT被认为是大肠杆菌K12遗传图谱中malA区域和malB区域中“麦芽糖操纵子”诱导所必需的正调控基因。尚未发现反式显性malT突变。因此,如果它们存在,其出现频率小于10^(-8),或者会严重降低突变体的生长速率。

相似文献

1
On some genetic aspects of phage lambda resistance in E. coli K12.
Genetics. 1972 Jun;71(2):207-16. doi: 10.1093/genetics/71.2.207.
2
Divergent operons and the genetic structure of the maltose B region in Escherichia coli K12.
Genetics. 1974 Feb;76(2):169-84. doi: 10.1093/genetics/76.2.169.
3
malB region in Escherichia coli K-12: characterization of new mutations.
J Bacteriol. 1974 Jan;117(1):40-7. doi: 10.1128/jb.117.1.40-47.1974.
4
Structure of the malB region in Escherichia coli K12. I. Genetic map of the malK-lamB operon.
Mol Gen Genet. 1979 Jul 24;174(3):241-8. doi: 10.1007/BF00267796.
5
malB region in Escherichia coli K-12: specialized transducing bacteriophages and first restriction map.
J Bacteriol. 1978 Dec;136(3):1109-19. doi: 10.1128/jb.136.3.1109-1119.1978.
6
Mutations in the promoter regions of the malEFG and malK-lamB operons of Escherichia coli K12.
J Mol Biol. 1983 Nov 15;170(4):861-82. doi: 10.1016/s0022-2836(83)80192-2.
7
Temperature sensitivity of maltose utilization and lambda resistance in Escherichia coli B.
J Bacteriol. 1971 Jun;106(3):791-6. doi: 10.1128/jb.106.3.791-796.1971.
8
9
Pleiotropic mutations rendering Escherichia coli K-12 resistant to bacteriophage TP1.
J Bacteriol. 1980 Sep;143(3):1374-83. doi: 10.1128/jb.143.3.1374-1383.1980.

引用本文的文献

1
Ecological memory preserves phage resistance mechanisms in bacteria.
Nat Commun. 2021 Nov 24;12(1):6817. doi: 10.1038/s41467-021-26609-w.
3
Balance between promiscuity and specificity in phage λ host range.
ISME J. 2021 Aug;15(8):2195-2205. doi: 10.1038/s41396-021-00912-2. Epub 2021 Feb 15.
4
Distinct patterns of mutational sensitivity for resistance and maltodextrin transport in LamB.
Microb Genom. 2020 Apr;6(4). doi: 10.1099/mgen.0.000364. Epub 2020 Apr 2.
5
Leaky resistance and the conditions for the existence of lytic bacteriophage.
PLoS Biol. 2018 Aug 16;16(8):e2005971. doi: 10.1371/journal.pbio.2005971. eCollection 2018 Aug.
6
Bacteriophage lambda: Early pioneer and still relevant.
Virology. 2015 May;479-480:310-30. doi: 10.1016/j.virol.2015.02.010. Epub 2015 Mar 3.
7
Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks.
Mol Syst Biol. 2014 Nov 24;10(11):763. doi: 10.15252/msb.20145735.
8
A quorum-sensing-induced bacteriophage defense mechanism.
mBio. 2013 Feb 19;4(1):e00362-12. doi: 10.1128/mBio.00362-12.
9
Effects of bacteriophage traits on plaque formation.
BMC Microbiol. 2011 Aug 9;11:181. doi: 10.1186/1471-2180-11-181.
10
Enhanced L-phenylalanine production by recombinant Escherichia coli BR-42 (pAP-B03) resistant to bacteriophage BP-1 via a two-stage feeding approach.
J Ind Microbiol Biotechnol. 2011 Sep;38(9):1219-27. doi: 10.1007/s10295-010-0900-9. Epub 2010 Nov 21.

本文引用的文献

2
CHROMOSOMAL ABERRATIONS ASSOCIATED WITH MUTATIONS TO BACTERIOPHAGE RESISTANCE IN ESCHERICHIA COLI.
J Bacteriol. 1965 Jan;89(1):28-40. doi: 10.1128/JB.89.1.28-40.1965.
3
Effect of glucose on the formation of bacteriophage lambda.
Nature. 1962 Jan 13;193:197-8. doi: 10.1038/193197a0.
5
O0 and strong-polar mutations in the gal operon are insertions.
Mol Gen Genet. 1968;102(4):353-63. doi: 10.1007/BF00433726.
6
Effect of glucose on the capacity of Escherichia coli to be infected by a virulent lamba bacteriophage.
J Bacteriol. 1965 Nov;90(5):1188-93. doi: 10.1128/jb.90.5.1188-1193.1965.
7
Complementation studies in the maltose-A region of the Escherichia coli K12 genetic map.
J Mol Biol. 1971 Nov 14;61(3):681-94. doi: 10.1016/0022-2836(71)90072-6.
9
Genetic analysis of the maltose A region in Escherichia coli.
J Bacteriol. 1969 May;98(2):559-67. doi: 10.1128/jb.98.2.559-567.1969.
10
Frameshift mutations in the lactose operon of E. coli.
Cold Spring Harb Symp Quant Biol. 1966;31:189-201. doi: 10.1101/sqb.1966.031.01.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验