Suppr超能文献

金黄色葡萄球菌MF-31过氧化氢酶的热失活

Heat inactivation of catalase from Staphylococcus aureus MF-31.

作者信息

Andrews G P, Martin S E

出版信息

Appl Environ Microbiol. 1979 Jun;37(6):1180-5. doi: 10.1128/aem.37.6.1180-1185.1979.

Abstract

The effects of heat on catalase from Staphylococcus aureus lysates were examined. Catalase activity increased with increasing concentrations of potassium phosphate buffer, when heated at temperatures between 50 and 65 degrees C for 10 min. Inactivation of catalase by NaCl during heating was demonstrated. Extended heating of S. aureus cells at 52 degrees C resulted in a slight decrease in catalase activity of the resultant lysates. This decrease was more pronounced in the presence of salt. Heating at 62 degrees C caused a decrease in catalase activity, but not complete inactivation. These results implicate the combined effects of heat, and NaCl in the inactivation of catalase from S. aureus. The findings are consistent with the hypothesis that H2O2 may accumulate as a result of decreased catalase activity and be responsible for the decreased colony-forming ability of stressed S. aureus.

摘要

研究了热对金黄色葡萄球菌裂解物中过氧化氢酶的影响。当在50至65摄氏度的温度下加热10分钟时,过氧化氢酶活性随着磷酸钾缓冲液浓度的增加而增加。证明了加热过程中NaCl对过氧化氢酶的失活作用。在52摄氏度下对金黄色葡萄球菌细胞进行长时间加热,导致所得裂解物中过氧化氢酶活性略有下降。在有盐存在的情况下,这种下降更为明显。在62摄氏度下加热导致过氧化氢酶活性下降,但并未完全失活。这些结果表明热和NaCl共同作用导致金黄色葡萄球菌过氧化氢酶失活。这些发现与以下假设一致,即过氧化氢酶活性降低可能导致H2O2积累,并导致应激状态下金黄色葡萄球菌的集落形成能力下降。

相似文献

1
Heat inactivation of catalase from Staphylococcus aureus MF-31.
Appl Environ Microbiol. 1979 Jun;37(6):1180-5. doi: 10.1128/aem.37.6.1180-1185.1979.
2
Catalase activity during the recovery of heat-stressed Staphylococcus aureus MF-31.
Appl Environ Microbiol. 1979 Sep;38(3):390-4. doi: 10.1128/aem.38.3.390-394.1979.
3
Superoxide dismutase activity in thermally stressed Staphylococcus aureus.
Appl Environ Microbiol. 1981 Feb;41(2):449-54. doi: 10.1128/aem.41.2.449-454.1981.
4
Synthesis of catalase in Staphylococcus aureus MF-31.
Appl Environ Microbiol. 1987 Jun;53(6):1207-9. doi: 10.1128/aem.53.6.1207-1209.1987.
5
Superoxide dismutase activity during recovery of thermally stressed Staphylococcus aureus MF-31.
Appl Environ Microbiol. 1981 Mar;41(3):700-4. doi: 10.1128/aem.41.3.700-704.1981.
6
Catalase: its effect on microbial enumeration.
Appl Environ Microbiol. 1976 Nov;32(5):731-4. doi: 10.1128/aem.32.5.731-734.1976.
7
Catalase and enumeration of stressed Staphylococcus aureus cells.
Appl Environ Microbiol. 1977 May;33(5):1112-7. doi: 10.1128/aem.33.5.1112-1117.1977.
8
Stability of ribosomes of Staphylococcus aureus S6 sublethally heated in different buffers.
J Bacteriol. 1978 Feb;133(2):564-8. doi: 10.1128/jb.133.2.564-568.1978.
9
Effect of free-radical scavengers on enumeration of thermally stressed cells of Staphylococcus aureus MF-31.
Appl Environ Microbiol. 1982 May;43(5):1020-5. doi: 10.1128/aem.43.5.1020-1025.1982.

引用本文的文献

1
P19-derived neuronal cells express H, H, and H histamine receptors: a biopharmaceutical approach to evaluate antihistamine agents.
Amino Acids. 2023 Jun;55(6):821-833. doi: 10.1007/s00726-023-03273-6. Epub 2023 May 12.
2
Platelet-Rich Fibrin Can Neutralize Hydrogen Peroxide-Induced Cell Death in Gingival Fibroblasts.
Antioxidants (Basel). 2020 Jun 26;9(6):560. doi: 10.3390/antiox9060560.
3
Synergistic effect of thermal energy on bactericidal action of photolysis of H₂O₂ in relation to acceleration of hydroxyl radical generation.
Antimicrob Agents Chemother. 2012 Jan;56(1):295-301. doi: 10.1128/AAC.05158-11. Epub 2011 Oct 24.
4
Superoxide dismutase activity in thermally stressed Staphylococcus aureus.
Appl Environ Microbiol. 1981 Feb;41(2):449-54. doi: 10.1128/aem.41.2.449-454.1981.
5
Superoxide dismutase activity during recovery of thermally stressed Staphylococcus aureus MF-31.
Appl Environ Microbiol. 1981 Mar;41(3):700-4. doi: 10.1128/aem.41.3.700-704.1981.
6
Effect of free-radical scavengers on enumeration of thermally stressed cells of Staphylococcus aureus MF-31.
Appl Environ Microbiol. 1982 May;43(5):1020-5. doi: 10.1128/aem.43.5.1020-1025.1982.
7
Synthesis of catalase in Staphylococcus aureus MF-31.
Appl Environ Microbiol. 1987 Jun;53(6):1207-9. doi: 10.1128/aem.53.6.1207-1209.1987.
8
Catalase and superoxide dismutase activities after heat injury of Listeria monocytogenes.
Appl Environ Microbiol. 1988 Feb;54(2):581-2. doi: 10.1128/aem.54.2.581-582.1988.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Comparative heat stability of blood catalase.
Arch Biochem Biophys. 1967 Nov;122(2):338-43. doi: 10.1016/0003-9861(67)90203-2.
3
Repair of thermal injury of Staphylococcus aureus.
J Bacteriol. 1966 Jan;91(1):134-42. doi: 10.1128/jb.91.1.134-142.1966.
5
Mechanisms of thermal injury in nonsporulating bacteria.
Adv Appl Microbiol. 1970;12:89-119. doi: 10.1016/s0065-2164(08)70583-5.
6
Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role.
Physiol Rev. 1970 Jul;50(3):319-75. doi: 10.1152/physrev.1970.50.3.319.
7
Colorimetric assay of catalase.
Anal Biochem. 1972 Jun;47(2):389-94. doi: 10.1016/0003-2697(72)90132-7.
8
The influence of dehydration on catalase stability. A comparison with freezing effects.
Cryobiology. 1974 Apr;11(2):148-51. doi: 10.1016/0011-2240(74)90304-6.
9
The effect of phage infection on the catalase induction of the Staphylococcus aureus culture.
Experientia. 1966 Dec 15;22(12):802-3. doi: 10.1007/BF01897425.
10
Catalase and enumeration of stressed Staphylococcus aureus cells.
Appl Environ Microbiol. 1977 May;33(5):1112-7. doi: 10.1128/aem.33.5.1112-1117.1977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验