Bucker E R, Martin S E
Appl Environ Microbiol. 1981 Mar;41(3):700-4. doi: 10.1128/aem.41.3.700-704.1981.
Superoxide dismutase (SOD) activity was determined during the growth cycle of unheated and heat-injured cells of Staphylococcus aureus MF-31. SOd activity levels dropped in unheated cells during the lag phase, increased during logarithmic phase, and became constant in the stationary phase. Cells which were sublethally heated (52 degrees c, 20 min) in 100 mM phosphate buffer and subsequently allowed to recover in tryptic soy broth demonstrated an 85% decrease in SOD activity upon inoculation into recovery medium. As the injured cells repaired the heat-induced lesions and entered logarithmic growth, SOD levels rapidly increased. Heat-injured cells allowed to recover in tryptic soy broth plus 10% NaCl showed similar decreases in SOD activity levels. However, no subsequent increase was observed when specific activity was calculated based on milligrams of protein.
在金黄色葡萄球菌MF-31未加热和热损伤细胞的生长周期中测定了超氧化物歧化酶(SOD)活性。未加热细胞的SOD活性水平在迟缓期下降,对数期增加,并在稳定期保持恒定。在100 mM磷酸盐缓冲液中进行亚致死加热(52℃,20分钟),随后在胰蛋白胨大豆肉汤中恢复的细胞,接种到恢复培养基后SOD活性降低了85%。随着受损细胞修复热诱导损伤并进入对数生长期,SOD水平迅速增加。在胰蛋白胨大豆肉汤加10% NaCl中恢复的热损伤细胞,其SOD活性水平也有类似程度的下降。然而,当根据蛋白质毫克数计算比活性时,未观察到随后的增加。