Vaughan D P, Dennis M J
J Pharmacokinet Biopharm. 1979 Oct;7(5):511-25. doi: 10.1007/BF01062392.
The solution for a linear mammillary model is always described by a summation of m + 1 negative exponential terms with constant coefficients. m + 1 less than or equal to N, where N is the number of compartments in the model. m is equal to the number of distinct values for the peripheral Ej values. Use is made of matrix notation and the theorems of Browne concerning the eigenvalues of a matrix. The consequences of vanishing exponentials are derived, and in particular the apparent volume of distribution frequently calculated from experimental data is shown not to be unique.
线性乳头状模型的解总是由具有恒定系数的m + 1个负指数项的总和来描述。m + 1小于或等于N,其中N是模型中的区室数。m等于外周Ej值的不同值的数量。使用矩阵符号以及布朗关于矩阵特征值的定理。推导了消失指数的结果,特别是从实验数据中经常计算出的表观分布体积不是唯一的。