Suppr超能文献

替考拉宁,一种来自新种游动放线菌的新型抗生素。

Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp.

作者信息

Somma S, Gastaldo L, Corti A

出版信息

Antimicrob Agents Chemother. 1984 Dec;26(6):917-23. doi: 10.1128/AAC.26.6.917.

Abstract

Teicoplanin, a new glycopeptide antibiotic belonging to the same family as vancomycin, inhibits cell wall synthesis in Bacillus subtilis; the inhibition is accompanied by an intracellular accumulation of UDP-N-acetyl-muramyl-pentapeptide. A cell-free system from Bacillus stearothermophilus, capable of synthesizing peptidoglycan, is 50% inhibited by teicoplanin at 40 micrograms/ml and 100% inhibited at 100 micrograms/ml; suppression of peptidoglycan synthesis is accompanied by parallel accumulation of the lipid intermediate. Teicoplanin binds to cell walls and forms a complex with N,N'-diacetyl-L-lysyl-D-alanyl-D-alanine. The association constant of this complex is 2.56 X 10(6) liters mol-1, calculated by spectrophotometric titration. The mechanism of action of teicoplanin is discussed in comparison with those of other inhibitors of cell wall biosynthesis, namely, vancomycin, ristocetin, and gardimycin.

摘要

替考拉宁是一种与万古霉素同属一类的新型糖肽类抗生素,它能抑制枯草芽孢杆菌细胞壁的合成;这种抑制作用伴随着UDP-N-乙酰胞壁酰五肽在细胞内的积累。嗜热脂肪芽孢杆菌的一种无细胞体系能够合成肽聚糖,在替考拉宁浓度为40微克/毫升时该体系受到50%的抑制,在100微克/毫升时受到100%的抑制;肽聚糖合成的抑制伴随着脂质中间体的平行积累。替考拉宁与细胞壁结合并与N,N'-二乙酰-L-赖氨酰-D-丙氨酰-D-丙氨酸形成复合物。通过分光光度滴定法计算,该复合物的缔合常数为2.56×10⁶升·摩尔⁻¹。文中将替考拉宁的作用机制与其他细胞壁生物合成抑制剂,即万古霉素、瑞斯托菌素和加迪米星的作用机制进行了比较。

相似文献

1
Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp.
Antimicrob Agents Chemother. 1984 Dec;26(6):917-23. doi: 10.1128/AAC.26.6.917.
3
Gardimycin, a new antibiotic inhibiting peptidoglycan synthesis.
Antimicrob Agents Chemother. 1977 Mar;11(3):396-401. doi: 10.1128/AAC.11.3.396.
5
Glycopeptide resistance determinants from the teicoplanin producer Actinoplanes teichomyceticus.
FEMS Microbiol Lett. 2004 Nov 1;240(1):69-74. doi: 10.1016/j.femsle.2004.09.017.
6
Extraction and Analysis of Peptidoglycan Cell Wall Precursors.
Methods Mol Biol. 2016;1440:153-70. doi: 10.1007/978-1-4939-3676-2_12.
7
Structure, biochemistry and mechanism of action of glycopeptide antibiotics.
Eur J Clin Microbiol Infect Dis. 1989 Nov;8(11):943-50. doi: 10.1007/BF01967563.
8
Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum.
J Bacteriol. 1996 Sep;178(18):5431-7. doi: 10.1128/jb.178.18.5431-5437.1996.
9
Reversal of the vancomycin inhibition of peptidoglycan synthesis by cell walls.
J Bacteriol. 1968 Aug;96(2):374-82. doi: 10.1128/jb.96.2.374-382.1968.
10
The site of inhibition of bacterial cell wall peptidoglycan synthesis by azureomycin B, a new antibiotic.
J Biochem. 1980 Aug;88(2):565-70. doi: 10.1093/oxfordjournals.jbchem.a133004.

引用本文的文献

1
Discovery of thiazostatin D/E using UPLC-HR-MS2-based metabolomics and σ-factor engineering of sp. SE50/110.
Front Bioeng Biotechnol. 2024 Nov 25;12:1497138. doi: 10.3389/fbioe.2024.1497138. eCollection 2024.
2
Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology.
Microorganisms. 2023 Apr 26;11(5):1129. doi: 10.3390/microorganisms11051129.
3
Antibiotics and Carbohydrate-Containing Drugs Targeting Bacterial Cell Envelopes: An Overview.
Pharmaceuticals (Basel). 2022 Jul 29;15(8):942. doi: 10.3390/ph15080942.
4
Structure and Biosynthesis of Desmamides A-C, Lipoglycopeptides from the Endophytic Cyanobacterium LEGE 12446.
J Nat Prod. 2022 Jul 22;85(7):1704-1714. doi: 10.1021/acs.jnatprod.2c00162. Epub 2022 Jul 6.
5
Bioinoculants-Natural Biological Resources for Sustainable Plant Production.
Microorganisms. 2021 Dec 27;10(1):51. doi: 10.3390/microorganisms10010051.
6
The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices.
Front Bioeng Biotechnol. 2020 Nov 11;8:910. doi: 10.3389/fbioe.2020.00910. eCollection 2020.
8
Investigating the Modes of Action of the Antimicrobial Chalcones BC1 and T9A.
Molecules. 2020 Oct 9;25(20):4596. doi: 10.3390/molecules25204596.
9
Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements.
Life Sci. 2020 Sep 1;256:117883. doi: 10.1016/j.lfs.2020.117883. Epub 2020 Jun 1.
10
Therapeutic compounds targeting Lipid II for antibacterial purposes.
Infect Drug Resist. 2019 Aug 23;12:2613-2625. doi: 10.2147/IDR.S215070. eCollection 2019.

本文引用的文献

1
Mutants of Escherichia coli requiring methionine or vitamin B12.
J Bacteriol. 1950 Jul;60(1):17-28. doi: 10.1128/jb.60.1.17-28.1950.
2
Accumulation of a uridine nucleotide in Staphylococcus aureus as the consequence of lysine deprivation.
Biochim Biophys Acta. 1959 Nov;36:83-92. doi: 10.1016/0006-3002(59)90072-1.
5
Teichomycin: in-vitro and in-vivo evaluation in comparison with other antibiotics.
J Antimicrob Chemother. 1983 May;11(5):419-25. doi: 10.1093/jac/11.5.419.
6
Compounds formed between nucleotides related to the biosynthesis of bacterial cell wall and vancomycin.
Biochem Biophys Res Commun. 1966 Aug 12;24(3):489-94. doi: 10.1016/0006-291x(66)90188-4.
7
Specificity of combination between mucopeptide precursors and vancomycin or ristocetin.
Biochem J. 1969 Jan;111(2):195-205. doi: 10.1042/bj1110195.
8
Reversal of the vancomycin inhibition of peptidoglycan synthesis by cell walls.
J Bacteriol. 1968 Aug;96(2):374-82. doi: 10.1128/jb.96.2.374-382.1968.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验