Suppr超能文献

蝾螈(美西钝口螈)视网膜中光感受器之间相互作用的定量分析。

A quantitative analysis of interactions between photoreceptors in the salamander (Ambystoma) retina.

作者信息

Attwell D, Wilson M, Wu S M

出版信息

J Physiol. 1984 Jul;352:703-37. doi: 10.1113/jphysiol.1984.sp015318.

Abstract

A quantitative description of the electrical properties of the photoreceptor layer in the salamander retina was obtained from earlier data on the characteristics of isolated rods and cones and on rod-rod coupling, and from new data on rod-cone and cone-cone coupling and on the rod photocurrent. Injecting -1 nA current into a rod elicits hyperpolarizations of about 20 mV in an adjacent rod and 4 mV in an adjacent cone. Responses of more distant receptors are smaller. Injecting -1 nA into a cone elicits hyperpolarizations of about 4 mV in an adjacent rod and 0.4 mV in a nearby cone. Depolarizing current evokes smaller responses. Assuming, in agreement with anatomical evidence, that each rod is electrically coupled to four rods and to four cones around it, and that there is no direct electrical coupling between cones, we found these results could be predicted from the properties of isolated rods and cones if adjacent rods are coupled by a resistance of 300 M omega and adjacent rods and cones are coupled by a resistance of 5000 M omega. The small cone-cone coupling seen is due to coupling via intervening rods. The two halves of double cones are not electrically coupled. The spectral sensitivity of both halves is a maximum around 620 nm wave-length. The rod photocurrent has been characterized by voltage-clamping rods isolated from the retina. In agreement with Bader, MacLeish & Schwartz (1979) we found the time course of the photocurrent to be approximately independent of voltage between -35 and -85 mV. The voltage responses of rods, single cones and double cones isolated from the retina obey the principle of univariance. Responses of receptors in the retina do not obey univariance. The main deviations from univariance observed can be explained if adjacent rods and cones are coupled by a resistance of 5000 M omega. Our data demonstrate that rod-cone coupling is relatively weak. We simplified our description of the photoreceptor network, by omitting cones, to investigate the spatiotemporal processing that the rod network is capable of. Computer simulations predict, as is found experimentally, that the rod voltage response to a large spot of bright light should show a much more pronounced initial transient hyperpolarization than the response to a small spot of light of the same intensity. This difference is produced by the combination of electrical coupling of the rods with the existence of a voltage-gated current, IA, in the rod membrane.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

根据此前关于分离的视杆细胞和视锥细胞特性以及视杆细胞 - 视杆细胞耦合的数据,以及关于视杆细胞 - 视锥细胞和视锥细胞 - 视锥细胞耦合以及视杆细胞光电流的新数据,获得了蝾螈视网膜光感受器层电特性的定量描述。向一个视杆细胞注入 -1 nA 的电流,会在相邻视杆细胞中引起约 20 mV 的超极化,在相邻视锥细胞中引起 4 mV 的超极化。距离更远的感受器的反应较小。向一个视锥细胞注入 -1 nA 的电流,会在相邻视杆细胞中引起约 4 mV 的超极化,在附近视锥细胞中引起 0.4 mV 的超极化。去极化电流引起的反应较小。与解剖学证据一致,假设每个视杆细胞与其周围的四个视杆细胞和四个视锥细胞存在电耦合,并且视锥细胞之间不存在直接电耦合,我们发现,如果相邻视杆细胞通过 300 MΩ 的电阻耦合,相邻视杆细胞和视锥细胞通过 5000 MΩ 的电阻耦合,那么这些结果可以从分离的视杆细胞和视锥细胞的特性中预测出来。观察到的较小的视锥细胞 - 视锥细胞耦合是由于通过中间视杆细胞的耦合。双视锥细胞的两半没有电耦合。两半的光谱敏感性在波长约 620 nm 处最大。视杆细胞光电流已通过对从视网膜分离的视杆细胞进行电压钳制来表征。与巴德、麦克利什和施瓦茨(1979 年)一致,我们发现光电流的时间进程在 -35 至 -85 mV 之间的电压下大致与电压无关。从视网膜分离的视杆细胞、单视锥细胞和双视锥细胞的电压反应遵循单变量原则。视网膜中感受器的反应不遵循单变量原则。如果相邻视杆细胞和视锥细胞通过 5000 MΩ 的电阻耦合,那么观察到的与单变量原则的主要偏差就可以得到解释。我们的数据表明视杆细胞 - 视锥细胞耦合相对较弱。我们通过省略视锥细胞简化了对光感受器网络的描述,以研究视杆细胞网络能够进行的时空处理。计算机模拟预测,正如实验发现的那样,视杆细胞对大光斑强光的电压反应应该比相同强度小光斑光的反应表现出更明显的初始瞬时超极化。这种差异是由视杆细胞的电耦合与视杆细胞膜中存在的电压门控电流 IA 共同产生的。(摘要截取自 400 字)

相似文献

1
A quantitative analysis of interactions between photoreceptors in the salamander (Ambystoma) retina.
J Physiol. 1984 Jul;352:703-37. doi: 10.1113/jphysiol.1984.sp015318.
3
Electrical coupling between rods and cones in the tiger salamander retina.
Proc Natl Acad Sci U S A. 1988 Jan;85(1):275-8. doi: 10.1073/pnas.85.1.275.
4
A sign-reversing pathway from rods to double and single cones in the retina of the tiger salamander.
J Physiol. 1983 Mar;336:313-33. doi: 10.1113/jphysiol.1983.sp014583.
5
The effect of light on the spread of signals through the rod network of the salamander retina.
Brain Res. 1985 Sep 16;343(1):79-88. doi: 10.1016/0006-8993(85)91160-6.
8
Current-voltage relations in the rod photoreceptor network of the turtle retina.
J Physiol. 1980 Nov;308:159-84. doi: 10.1113/jphysiol.1980.sp013466.
9
Response properties of cones from the retina of the tiger salamander.
J Physiol. 1991 Feb;433:561-87. doi: 10.1113/jphysiol.1991.sp018444.
10
The properties of single cones isolated from the tiger salamander retina.
J Physiol. 1982 Jul;328:259-83. doi: 10.1113/jphysiol.1982.sp014263.

引用本文的文献

1
A standardized nomenclature for the rods and cones of the vertebrate retina.
PLoS Biol. 2025 May 7;23(5):e3003157. doi: 10.1371/journal.pbio.3003157. eCollection 2025 May.
2
3
Linear and Nonlinear Behaviors of the Photoreceptor Coupled Network.
J Neurosci. 2024 Apr 17;44(16):e1433232024. doi: 10.1523/JNEUROSCI.1433-23.2024.
4
Interphotoreceptor coupling: an evolutionary perspective.
Pflugers Arch. 2021 Sep;473(9):1539-1554. doi: 10.1007/s00424-021-02572-9. Epub 2021 May 14.
5
Molecular and functional architecture of the mouse photoreceptor network.
Sci Adv. 2020 Jul 8;6(28):eaba7232. doi: 10.1126/sciadv.aba7232. eCollection 2020 Jul.
6
What the salamander eye has been telling the vision scientist's brain.
Semin Cell Dev Biol. 2020 Oct;106:61-71. doi: 10.1016/j.semcdb.2020.04.010. Epub 2020 Apr 29.
7
Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina.
Physiol Rev. 2019 Jul 1;99(3):1527-1573. doi: 10.1152/physrev.00027.2018.
8
Modes of Accessing Bicarbonate for the Regulation of Membrane Guanylate Cyclase (ROS-GC) in Retinal Rods and Cones.
eNeuro. 2019 Feb 15;6(1). doi: 10.1523/ENEURO.0393-18.2019. eCollection 2019 Jan-Feb.
9
The dynamic receptive fields of retinal ganglion cells.
Prog Retin Eye Res. 2018 Nov;67:102-117. doi: 10.1016/j.preteyeres.2018.06.003. Epub 2018 Jun 23.
10

本文引用的文献

1
Temporal and spatial summation in human vision at different background intensities.
J Physiol. 1958 Apr 30;141(2):337-50. doi: 10.1113/jphysiol.1958.sp005978.
2
Clasping structure in the double cone of the retina of the turtle (Gyoclemys reevesii).
Cell Tissue Res. 1980;209(3):391-8. doi: 10.1007/BF00234754.
4
Rod and cone signals in the horizontal cells of the tiger salamander retina.
J Physiol. 1980 Jan;298:397-405. doi: 10.1113/jphysiol.1980.sp013089.
5
Spread of activation and desensitisation in rod outer segments.
Nature. 1980 Jan 3;283(5742):85-7. doi: 10.1038/283085a0.
7
The properties of single cones isolated from the tiger salamander retina.
J Physiol. 1982 Jul;328:259-83. doi: 10.1113/jphysiol.1982.sp014263.
8
Interactions among rods in the isolated retina of Bufo marinus.
J Physiol. 1981 May;314:237-54. doi: 10.1113/jphysiol.1981.sp013704.
9
A new method for obtaining isolated photoreceptors from the amphibian retina.
Pflugers Arch. 1983 Nov;399(3):238-40. doi: 10.1007/BF00656722.
10
A sign-reversing pathway from rods to double and single cones in the retina of the tiger salamander.
J Physiol. 1983 Mar;336:313-33. doi: 10.1113/jphysiol.1983.sp014583.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验