Suppr超能文献

The morphogenic/cytotoxic and prostaglandin-stimulating activities of interleukin-1 beta in the rat ovary are nitric oxide independent.

作者信息

Ben-Shlomo I, Adashi E Y, Payne D W

机构信息

Department of Obstetrics/Gynecology, University of Maryland at Baltimore 21201.

出版信息

J Clin Invest. 1994 Oct;94(4):1463-9. doi: 10.1172/JCI117484.

Abstract

Nitric oxide (NO) has been implicated as a mediator of physiologic and pathologic cellular injury. Since the cytokine interleukin-1 beta (IL-1 beta) induces nitric oxide synthase (NOS) activity as well as effects morphogenic/cytotoxic changes and increased prostaglandin (PGE2) levels in cultured whole ovarian dispersates, we set out to determine whether these actions are interrelated. Treatment with IL-1 beta resulted in a marked increase in media nitrite and nitrate accumulation, morphological alterations, and increased release of lactate dehydrogenase (LDH) into media. Addition of IL-1 receptor antagonist (RA) eliminated these IL-1 beta effects. In contrast, specific inhibitors of NOS failed to reverse IL-1 beta-induced morphogenic changes or LDH release in spite of complete reduction of media nitrite to control levels. Similarly, treatment with transforming growth factor beta 1, inhibited IL-1 beta-induced nitrite accumulation, but had no effect on the morphologic or cytotoxic endpoints. Moreover, the addition of sodium nitroprusside, an NO generator, resulted in progressive increments in media nitrite content without a corresponding increase in the IL-1 beta-associated morphogenic changes or media LDH content. Furthermore, IL-1-induced PGE2 accumulation remained unaffected by specific NOS inhibition. These observations support the view that NO does not mediate the morphogenic/cytotoxic or inflammatory-like (e.g., PGE2 inducing) properties of IL-1 beta in cultured whole ovarian dispersates. Although the precise role of NO in ovarian physiology remains unknown, it is possible that NO participates in the periovulatory modulation of ovarian blood flow by virtue of its potent vasodilatory activity.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eca/295282/b3397b4e5c1f/jcinvest00022-0125-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验